

Fuzzing Embedded Devices

Finding unknown vulnerabilities in home electronics

Rikke Kuipers and Ari Takanen

DEFEND. THEN DEPLOY.

Industry is Slowly Waking Up to the Unknown Threats

"All software has undetected exploitable vulnerabilities" - Security Vendor 2009

"All our zero-day vulnerabilities were found with Fuzzing."

– Software Vendor 2010

"You would be a fool not to Fuzz." – Analyst 2011

What is Fuzzing?

 A testing technique where purposefully unexpected and/or invalid input data is fed to tested system in hope to find robustness and

security problems

Fuzzing Techniques

Mutation/Template-Based Fuzzing

- Quality of tests is based on the used template (seed) and mutation technique
- Slow to execute, least bugs found

Generational/Specification-Based Fuzzing

- Full test coverage, as the model is built from specification
- Fast to execute, most bugs found

Fuzzer Efficiency Case Study

- Most important efficiency metric for fuzzers:
 - How many bugs does it find
 - How much time does it take to find them

"Smart" model-based generational fuzzer found 10 unique bugs

Generation fuzzer executed for 17 hours

Both found 2 same bugs

Mutation fuzzer found 4 unique bugs

Mutation fuzzer took 118 hours (5 days) to execute, after which no more new bugs were found

Codenomicon Labs


- We have tested and released test reports on:
 - WiFi access points
 - Bluetooth devices (including cars and medical devices)
 - NAS devices
 - Printers
 - Browsers
 - Smart TVs
- Any idea what we should test next?

TV Attack Vectors

CODENOMICON

- Dumb DVB-enabled TVs
 - DVB-C/T
 - IR
- Media center TVs
 - basic network connectivity: IPv4, UPnP, DLNA, DHCP, HTTP, FTP
 - Digital media: images, videos, audio
 - USB and memory cards
 - Bluetooth and WiFi (client)
 - limited network services
- Internet-enabled TVs
 - "Web 2.0 client"
 - Applets, applications, widgets
 - Full browser
 - Capability very similar to smart phones

Demo/Video about JPG fuzzing

ff e0

00 10

.. 01 01

Exif. 45 78 69 66 00

. 00

. * 00 2a

00 00 00 08

New attack vector: DVB

- Not just to transmit video/audio streams
 - vehicle to vehicle networks
 - navigation systems
 - handheld communications (DVB-H)
 - internet transport (IP-over-DVB/MPEG)
 - military (DVB-S2)
- DVB stream can contain several "channels" multiplexed into one stream, de-multiplexed at the receiver

Structure of MPEG2-TS / DVB

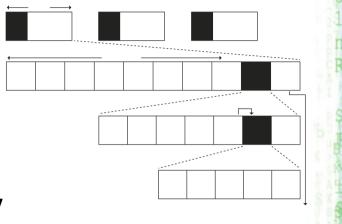
- Audio/video streams, in channel bundles
- Informational "tables" about the payload content, such as Program Association Table (PAT)

Each type of frame or table needs to be fuzzed

Selection of tool:

- Mutation fuzzing is the easiest, and most interoperable, but can be country-specific
- Model-based, generation fuzzing, is more optimized to find bugs faster
- Our solution was easy: Defensics MPEG2-TS fuzzer (available since 2010)

• Injection:


 Our solution: after "file fuzzing", multiplexing the stream back to right format, and then injecting using an off-the-shelf modulator

Fuzzing MPEG2-TS

CODENOMICON

- MPEG-TS acts like a protocol
- When fuzzing, each feature needs to be fuzzed separately

 "Common frames" require pauses between tests so that stream stays in sync

CAAAABAAAACAA

"Rare frames" can require long streams so that all functionality is tested

Anomalization

CODENOMICON

input

ANOMALIES

expose

VULNERABILITIES

FIELD LEVEL

overflows, integer anomalies

STRUCTURAL

underflows, repetition of elements, unexpected elements

SEQUENCE LEVEL

out of sequence omitted / unexpected repetition / spamming

WHAT FUZZING **FINDS**

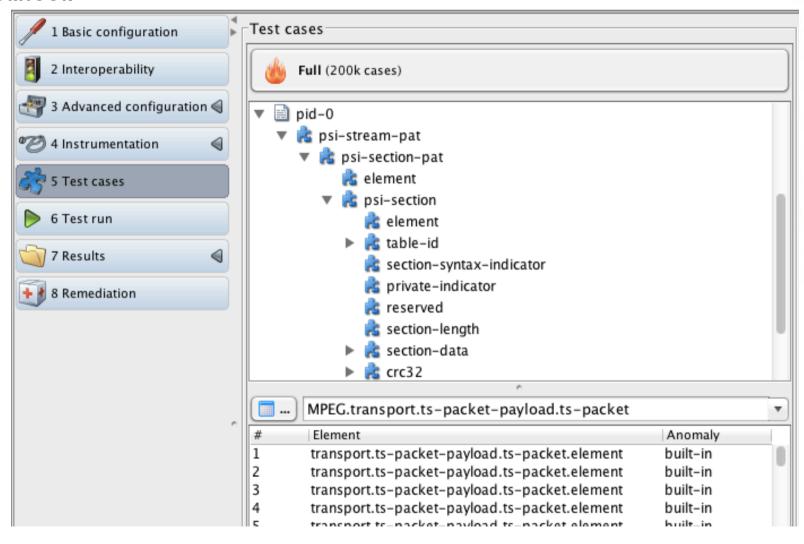
crashes

denial of service (DoS)

security exposures

performance degradation

slow responses


thrashing

anomalous behavior

Example Anomalies

CODENOMICON

Example Anomalies

CODENOMICON

c in	1 Basic configuration Test cases						
B							
Message							
000000	stream						
000000	ts-packet-payload						
000000	ts-packet						
000000	ts-prefix						
000000	sync-by	te G 47					
000001	trans-ei	ror 1bit 0					
	pay-sta	t 1bit 0					
	trans-pi	rio 1bit 0					
	pid	13bit 00000 00110001					
000003	tsc						
000003	r	ot-scrambled 2bit 00					
	afc						
	ā	daptation-payload 2bit 11					
	ctr	4bit 1111					
000004	00004 adaptation-payload						
000004	ts-adap	tation-field					
000004		ength * <u>2a</u>					
000005	ts-paylo						
000005		s-payload-data ()					
000005	stuffing	()					

F		Message			
Ü	000000	stream			
3	000000	pes-stream-ac3			
K	000000	pes-packet-ac3			
ii.	000000		00 00 01		
7	000003	stream-id			
CODE	000003	private-1 . bd			
CODI	000004	length <u>00</u> <u>01</u>			
	000006	pes-packet-header			
1	000006		2bit 10		
8-		scrambling-control			
		not-scrambled	2bit 00		
		priority	1bit 0		
00000		data-aligment-indicator	1bit 1		
		copyright	1bit 1		
00000		original-or-copy 1bit			
00000	000007	flags			
00000	000007	pts-dts 2bit			
00000		escr	1bit 0	G 47	
00000		es-rate	1bit 0	Lbit 0	
00000		dsm	1bit 0		
		aci	1bit 0	lbit 0	
		crc		1bit 0	
		ext	1bit 0 1bit 0	0001	
00000	000008	length	. 05		
00000	000009	variable-length		:h 00	
00000	000009		4bit 0010	oit 00	
		presentation-timestamp			
		base-32-30	3bit 101	pit 11	
		mbit		1111	
00000	00000a	base-29-15	15bit 00100101 0011100		
00000		mbit	1bit 1		
00000	00000c	base-14-0	15bit 11001100 1010110	* <u>2a</u>	
		mbit 155K 11001100 1010110			
00000	00000e	stuffing	()		
00000	00000e	ac3-bitstream	()	()	
00000	00000e	ac3-syncframe		()	
	00000e	ac3-syncinfo			

Modulation

"Thanks Sofia Digital!"

CODENOMICON

p0c@code:~\$ DtPlay stream.ts -n 1 -t 215 -ml -27.5 -i 1 -mt OFDM -mC QAM64 -mf 530 -mG 1/8 -mc 2/3 -mT 8k -r 22100000

- -n Device number to use: 1
- -t Device type to use: **215** (DTU-215)
- -i Port number of the output channel to use: 1
- -r Transport-Stream Rate in bps or sample rate in case of IQ-modulation mode:

22100000

- -ml Output level in dBm: -27.5
- -mG DVB-H/DVB-T guard interval: 1/8
- -mc Convolutional rate: 2/3
- -mf Modulation carrier frequency in MHz: **530**
- -mt Modulation type: **OFMD**
- -mC ATSC/DVB-H/DVB-T/DTMB constellation: **QAM64**
- -mT DVB-H/DVB-T transmission mode: 8k

Interoperability and Instrumentation

- Before fuzzing, the features in the target device need to be scanned
- Valid sequences are the easiest method, by building valid traffic directly from protocol specification
- Target device can be "picky" on what data it will accept
- Our solution: Capture of the local national TV stream is fed to the fuzzer
- In DVB, you cannot use valid sequences for instrumentation, as tests are unidirectional
- ICMP heart-beat "ping" is a simple instrumentation

Results

Protocol/ TV	TV 1	TV 2	TV 3	TV 4	TV 5	TV 6
IPv4	pass	FAIL	FAIL	pass	pass	FAIL
DVB	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL
UPnP	n/a	FAIL	pass	n/a	n/a	FAIL
Images	pass	FAIL	FAIL	n/a	n/a	FAIL
Audio	pass	pass	n/a	n/a	n/a	pass
Video	FAIL	FAIL	n/a	FAIL	FAIL	FAIL

"FAIL" means multiple repeatable crashes were found "pass" means the system did not crash (more fuzzing needed?) "n/a" means the interface did not exist, or was not tested

We did not analyze the failures for exploitability.

- As far as we know, there are no other fuzz tests against TVs
- No IPv6 yet in any TV
- Bad quality IPv4 still around
- DVB was easiest attack vector, probably because no DVB fuzzing available before this
- Video testing was with one container/codec only, but still lots of failures
- TV fuzzing might not be high priority, but most likely same DVB/MPEG codecs are also used in other industry domains

THANK YOU! QUESTIONS to:

ari.takanen@codenomicon.com

"Thrill to the excitement of the chase! Stalk bugs with care, methodology, and reason. Build traps for them.

. . . .

Testers!

Break that software (as you must) and drive it to the ultimate - but don't enjoy the programmer's pain."

[from Boris Beizer]