
Broadcasting encryption or
systematic #FAIL ?

2012
WEEK 42

Phil

2/49Phil2012

SUMMARY

● Intro : Broadcasting something...

● 1984 : Discret 11

● 1995 : Syster

● 1996 – 2002 : Seca 1

● 2002 – 2008 : Seca 2

● Conclusion

3/49Phil2012

Broadcasting : For the masses

● Picture + sound
● Signaling

Encrypted Stream

2 problems :
● Broadcast is for everyone
● No uplink

4/49Phil2012

Broadcasting : The receiver

Stream Audio
Video

S
i
g
n
a
l
i
n
g

Session KEY

Audio
Video

Crypted Unscrambled

Bad luck : RED and GREEN are UNIQUE for EVERYONE

5/49Phil2012

Broadcasting: Secure device

Signaling
(ECM)

CPU

EEPROM

CRYPTO
ENGINE

Session
key

Monthly
key

Bad luck2 : RED and GREEN are UNIQUE for EVERYONE

6/49Phil2012

Broadcasting : Monthly update

Signaling(EMM)
CPU

EEPROM

CRYPTO
ENGINE

Monthly key

User key

Rate, 1 per hour

value per subscriber is an UPDATE key !UNIQUEThe

7/49Phil2012

1984
The first pay-TV

system in France :

« DISCRET 11 »

8/49Phil2012

Discret 11

9/49Phil2012

Discret 11

Vintage !

10/49Phil2012

Discret 11

Main motivation ?

●Challenge
●Fun
●$$$
●And …

11/49Phil2012

Discret 11

#P0rn

A porn movie broadcasted each
first Saturday of the month …

12/49Phil2012

Discret 11 : The image

0 1 2

3 differents lines
0 : need to wait 1804ns
1 : need to wait 902ns
2 : line on time

Next frame

The image, regarding
to the timing aspect
of each line.

13/49Phil2012

Discret 11 : First hack
First implementation

Voltage comparators,
and live line timing
adaptation.

Broadcast start the 4
November 1984.
This implementation
was published in
December 1984 in a
french electronic
magazine !

Not a perfect solution, sometime
with black line, the hack didn't
apply the correct delay.

White line

Black line

14/49Phil2012

Discret 11 : countermeasures

64 µs

52 µs

Countermeasures to
kill pirate decoder :

All the line that must
be late are

As only 52µs of signal
is displayed, it did
not disturb too much
the viewer.

cropped.

15/49Phil2012

Discret 11 : clone

FFFF FFFF
A1AA A1AA
A2AA A2AA
FFFF A305
A405 FFFF
FFFF A566
A6A8 A6AC
FFFF FFFF

Dump of the
EEPROM 9306

Monthly update
coupon

The EEPROM to clone for using the subscription of
your friend. In 1984 it was secure, because no one
own an EEPROM programmer

16/49Phil2012

Discret 11 : full disclosure

The full encryption scheme was discover by only
looking the sequences of pictures.
● Each 6 frames the scrambling sequence restart
● 11 for 2^11 : the size of the delay table
● The monthly code is only the start point of the
delay table.

● Ability to automatically find the monthly code.

Important : today the original code in the
official receiver have never been dumped !

Nothing other than pictures was
needed to break the system.

17/49Phil2012

1995
Second pay-TV

system in France :

« SYSTER »

18/49Phil2012

Syster : the decoder

All the secret in the white KEY but ...

19/49Phil2012

Syster : the picture

20/49Phil2012

Syster : picture more closer
With SECAM one line have RED color information
encoded, the next one the BLUE, and so.

The line MIX done by the crypt system break this
rules of RBRBRBRBRB… lines.

While monitoring the color of each lines it was
possible to reconstruct each frame, without knonwing
the real algorithm & session KEY.

The decoder was build by Kudelski, but we add always
bet it was designed for PAL system.
Bad luck, it's SECAM in France …

They did not learn from the 1984 lesson!

21/49Phil2012

Syster : bad dayz, but ...

The countermeasure had certainly ask a lot of
brain at Kudelski engineer : find an encryption
scheme who did not break the RBRBRBRB… sequence.

They manage in and kill all the pirate decoder.
One point !

But …

The white KEY as show all it's secret with a
simple buffer overflow & code injection.

Then, dump, learn, implement & so …

22/49Phil2012

1996-2002

« SECA 1 »

Satellite broadcasting,
Stage 1 ...

23/49Phil2012

SECA 1

First try for the provider in the wonderful
satellite world with European broadcasting.

All the cards broken with software bugs.

All secrets known, thousands implementation of
emulators.
Revival and clone of official cards without much
pain.

All the different version of SECA 1's ROM had
never secure anything more than a short period …

24/49Phil2012

2002-2008
Satellite broadcasting,

Stage 2,

« SECA 2 »

25/49Phil2012

SECA 2 : The black screen

This time, a secure card ...

Let's share it !

26/49Phil2012

SECA 2 : Share your card

DVB norm born in 1993 :

No connection between peers in 1993,

but now-day it's a fact.

Let's exploit the bad design !

27/49Phil2012

KEY1KEY0

SECA 2 : the DVB flows

Video 0 Video 1 Video 2

Signaling 0 Signaling 1 Signaling 2

Time-line of DVB streaming

...

KEY1

t0 t1

10 seconds

t0 : zap on a channel, ask KEY0|KEY1, use KEY0
t1 : use KEY1 and ask for KEY1|KEY2

10 secs to grab the next session key, an eternity ...

KEY2
KEY2

...

Current

Next KEY3

t2 t3

Delay

28/49Phil2012

SECA 2 : hardware for sharing

Server side : a cheap ISO7816 smarcard
reader and a TCP/IP session manager.

Tips : a 3,57MHZ
clock is the
norm. But
overclocking the
card at 6.00MHZ
is fine, faster
zapping !

29/49Phil2012

SECA 2 : hardware for sharing
Client side : Modified rented receiver
(JTAG) with extra code added to grab
session KEY over a serial port + a PC
or a Linux embedded device to run a
session manager connected to internet.

30/49Phil2012

SECA 2 : countermeasures

● An annoying feature : an extra encryption on
the signaling datas. Usually AES is used and
the signaling is decrypted by the receiver
before sending ECM to the card. To solve this
problem, needs to reverse the firmware of an
official running set top box and extract the
AES KEY needed to clean the ECM before send it
to the card server.

● Until 2012, no real countermeasures on card
sharing. Nowadays a rate limit on a card : no
ECM serial flow from different channels are
allowed. Even a fast zapping can lock the card
and need a RESET to run again.

31/49Phil2012

SECA 2 : The smartcards

3 ROM : but all the reverse based on the V7.0
from Italia, because the dump was available.

 The studying of the 64KB ROM show no strong
software bug, only the ability to write
datas/instructions in EEPROM, but no way to jump
in. Useful but not enough ...

So, let's go for the real stuff :
Faults injection

32/49Phil2012

SECA 2 : The microcontroller

On the paper :
« Secure Control »

Black Hat 2008 say:
«The most secure of
the available OTS
choices».

Bad luck for us...

ATMEL 90SC6464C

Ok, but let's
check this feature

33/49Phil2012

SECA 2 : Glitches

● At 3.57MHZ : trying glitches on VCC and
CLK, nothing other than reset even or
sometime kill the card.

● At 800KHZ : no way with VCC, but random
faults obtained with the CLK.

● At 1MHZ : same behavior.

But we needs stability and
reproduce the behavior

34/49Phil2012

SECA 2 : THE glitch

With CLK=1MHZ, glitch 50ns after the edge, pulse is
20ns wide. Works each time : skip an instruction.

35/49Phil2012

SECA 2 : The CPLD

Simulation of the CPLD core program

Main function of the CPLD : the glitches generation

36/49Phil2012

SECA 2 : The « unlooper »
How it works :

100MHZ
CPLD

XC9536XL

CPU
AT90S2313

CLK=
10MHZ

CLK=1MHZ +
Glitches

I/O

Ask for
glitches

One single clock for all.
Card CLK / CPU CLK ratio : 1/10
Enough for accurate cycles counting

37/49Phil2012

SECA 2 : The « unlooper »
50ns, 20ns, means a clock of 100MHZ.
Hard for hobbyists like us …
But this can be bought for a few bucks :

Cut & strap few connections,
replace the CPLD, remove IC
slowing lines, the modded
one is ready and stable :

38/49Phil2012

SECA 2 : Synchronise it

Synchronize the CPU & the card at the cycle.

● Need a reference point to start count
cycles : when the last bit of the command
is send, the CPU start to count.

● The ratio of 1/10 between card & CPU allow
to be accurate and never miss a cycle.

So, we are ready to hit an instruction,
but how to count cycles ?!?

39/49Phil2012

SECA 2 : Count the cycle

The needs of a simulator …

Manually count cycles is impossible : glitch
an instruction after 55709 cycles can't be
counted on our finger …

«AVR studio» help us on this point.

But we needed to mod the instructions of the
full ROM because AT90SC6464C is not
supported.

40/49Phil2012

SECA 2 : Random delay

Another security feature : random
delays in execution flow. 100% of
the code in the card is non
constant timing.

Was a problem without the dump to
reproduce behaviors; but with the
dump, just need to skip the calls
to the function.

41/49Phil2012

SECA 2 : Stack manipulation

ROM dump show us a nice function : A
command (C1 B4) doing RAM copy.

With the help of 5 glitches and
special crafted parameters, this
command can write in RAM any bytes.

This can be used to override the
return address in the stack and jump
in EEPROM.

42/49Phil2012

SECA 2 : List of the tools

1.Software bug to write 4x22 bytes
in EEPROM.

2.Hardware (unlooper) to handle the
card and hit any instruction in
execution flow.

3.A AT90SC6464C simulator for ROM
cycles count & running code.

4.Stack manipulation ability.

In our toolbox we have now :

43/49Phil2012

SECA 2 : THE attack !

1.Assemble and write the code in
EEPROM using the software bug.

2.Use unlooper to send the glitches
while sending C1 B4 command to
jump in the EEPROM.

3.Get the result of our code as a
legacy command would return
values.

Scenario for running our own code :

44/49Phil2012

SECA 2 : Applications

1.Dump every part of ROM/RAM/EEPROM
for studying purpose, but also :
● Monthly key
● User management key

2.Replace any byte in EEPROM :
● Change RSA private key to avoid
counter measures.

● Replace serial number, management key
from a valid customer.

Benefits of running our code :

45/49Phil2012

SECA 2 : Backdoor

Another nice feature is the ability
for the provider to send upgraded code
in the card. Using this feature allow
us to run homebrew functions, but
WITHOUT unlooper.

With a simple ROM / RAM / EEPROM
management backdoor, you have the full
access with a simple ISO 7816 reader.

Now let's write our backdoor :

46/49Phil2012

SECA 2 : Backdoor

133 bytes mandatory :

Byte1 = FLASH or RAM
Byte2:Byte3 = ADR
Byte4 = LEN
Byte5 = Write EEPROM
or dump ROM or EEPROM
Byte6:Byte133 = datas

API :

47/49Phil2012

SECA 2 : countermeasures

Some try to hit cloned cards, but as we disallow
the code upgrade ability (backdoor & RSA KEY), no
way for the provider to gain again control !

With our degree of management of the card, no
countermeasures were really possible …

We 0nw U !

48/49Phil2012

SECA 2 : Emulators
As every secret was available, implementation of
emulators in cheap smartcards with onboard fast
enough RSA / SHA1 was possible with full auto-
update features.

This time a strong countermeasure appears : The
card wasn't based on a standard AT90SC6464C … A
modified version with a custom designed crypto-
engine was used. Some basics functions were
recovered by cryptanalysis (or unknown means), but
the strong customs functions remind today
undiscovered.

They 0wn Us !

49/49Phil2012

This is the end ...

● Beware of hobbyist with no means,
time, determination and … brains.

● Fun !
● The SECA 3 is not compromissed, give
it a try ?

● Questions ?

To conclude :

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49

