

GreHack 2013
PROCEEDINGS

"P*wn me I*m famous"
�

>> November, 15, 2013

>> Grenoble, France

GreHack 2013, Grenoble, France

1 / 139 GreHack

GreHack 2013, Grenoble, France

1 Introduction

1.1 Epilog – Welcome from the PC Chairs

November 15, 2013, Grenoble, France.

Dear GreHackers,

These proceedings record the papers presented at the second GreHack 2013, held in the french capital of
skiing: Grenoble.

GreHack aims at bringing together researchers and practitioners who work on theory, techniques, technolo-
gies, tools and applications that concern all aspects of computer science security. It focuses on offensive
security.

For this second edition, the conference has a range of contributions by distinguished speakers both from
academia and industry. Besides its formal session, the conference included three invited talks.

Reviewing and selection were undertaken electronically. We received 32 submissions that have been
peer-reviewed at least 3 times by the program committee. Finally, only 9 are presented at GreHack 2013
(acceptance rate: 28.1%). All papers will be indexed by DBLP. 3 outstanding papers have been selected for
a publication in the Springer Journal of Computer Virology and Hacking Techniques.

The quality of submissions was high. The reviews of the program committee were detailed and several
authors thanked the PC for their usefulness. The number of requests for attending was more important than
expected. Thus 40 persons were not able to get a ticket for the conference, and 50 were not able to get a
ticket for the CTF. This is due to a limited number of seats. The conference has more than 235 attendees, and
the CTF more than 140.

During the night, a Capture The Flag contest, similar in its form to DefCon, PhDays & co takes place. It
is organized by SecurIMAG, the Ethical Hacking club of Ensimag.

This event would not exist without outstanding security researchers, helpful sponsors, and such an extraordi-
nary organizing team (mainly composed of students!) who invested much of their free time. Please take this
opportunity to chat with them, as several will soon be looking for an internship, and others a job quite soon!

To all GreHack readers and audience, we wish a pleasant stay and a fertile inspiration!

Fabien Duchène 1

1@fabien_duchene

2 / 139 GreHack

http://grehack.org
http://ensiwiki.ensimag.fr/index.php/Portail:SecurIMAG_Ensimag_IT_security_club
http://ensimag.fr
https://twitter.com/fabien_duchene

GreHack 2013, Grenoble, France

1.2 Awards

• Outstanding Reviewer:

– Manuel Egele http://www.iseclab.org/people/pizzaman/

– Mario Heiderich http://heideri.ch/

– Jean-Philippe Aumasson https://131002.net/

1.3 Organizing Committee

They :

• handle the logistic of the conference

• handle the logistic of the CTF

• set-up the network environment for the CTF

• wrote the challenges for the CTF

Many organizers are members of the SecurIMAG ethical hacking team, an Ensimag Applied Mathemat-
ics and Computer Science Engineering University.

Figure 1: Logo of the SecurIMAG hacking team

http://ensiwiki.ensimag.fr/index.php/Portail:SecurIMAG_Ensimag_IT_security_
club

• Fabien Duchène, Guillaume Jeanne, François Desplanques

• Franck De Goer, Florent Autreau, Quentin Bourgeois, Tristan Braud, Cyril Lorenzetto, Adrien Moutard,
Arnaud Maillet, Phil, etc.

3 / 139 GreHack

http://www.iseclab.org/people/pizzaman/
http://heideri.ch/
https://131002.net/
http://ensiwiki.ensimag.fr/index.php/Portail:SecurIMAG_Ensimag_IT_security_club
http://ensimag.fr
http://ensiwiki.ensimag.fr/index.php/Portail:SecurIMAG_Ensimag_IT_security_club
http://ensiwiki.ensimag.fr/index.php/Portail:SecurIMAG_Ensimag_IT_security_club

GreHack 2013, Grenoble, France

1.4 Special Thanks

Many persons and entities did provide us additional help:

• CEA-DAM, Kudelski Security, Oracle, Sogeti High Tech, HP, Deloitte, Mataru, Nsigma for their
financial support

• For helping us:

– Pascal Malterre (CEA)

– Jean-Philippe Aumasson (Kudelski Security)

– Maxime Walter, Marc Ayadi, Ilyas Djafri (Deloitte)

– Bruno Hareng, Christophe Leclercq, Vincent Planat (HP)

– Florent Autreau (MATARU, UJF)

• Philippe-Elbaz Vincent (UJF, IF)

• Yves Denneulin (LIG, Ensimag)

• Mirella Bello (Ensimag), Simon Nieuviarts (Ensimag)

• Valérie Fréchard (ED-Diamonds)

• Ensimag, LIG for their technical support

• Gilles Thieblemont (Ensimag) , Emanuelle Bertrand (Ensimag)

• and to all of those who probably prefer their names not to appear in an electronic document (James
Bond over-dimensioned ego style) etc.

1.5 In Memoriam Cédric “SID” Blancher

In memorandum to Cédric “SID” Blancher. We offer our deepest condolences and sympathy to Cedric “SID”
Blancher’s family and friends. SID was a truly inspiring hacker.

Figure 2: Cédric “SID” Blancher (Feb. 27, 1976 – Nov. 10, 2013)

4 / 139 GreHack

https://www.google.com/search?q=cedric+sid+blancher
https://www.google.com/search?q=cedric+sid+blancher

GreHack 2013, Grenoble, France

1.6 Programme Committee

Each paper has been reviewed at least 3 times. The following outstanding security researchers have been
members of the GREHACK 2013 programme committee and reviewed submissions:

Dan Alloun (Intel, Israel)
Ruo Ando (NICT, Japan)
Jean-Philippe Aumasson (Kudelski Security, Switzerland)
Sofia Bekrar (VUPEN Security, France)
Elie Bursztein (Google, US)
Fabrice Desclaux aka Serpilliere (CEA-DAM, France)
Adam Doupe (UCSB, US)
Fabien Duchene (LIG, France) PC Chair
Chris Eng (Veracode, US)
Peter Van Eeckhoutte aka corelanc0d3r (Corelan, Belgium)
Manuel Egele (CMU, US)
Philippe Elbaz-Vincent (UJF, France)
Eric Filiol (ESIEA, France)
The Grugq (Thailand)
Mario Heiderich (Ruhr University Bochum, Germany)
Pascal Lafourcade (VERIMAG, France)
Cedric Lauradoux (INRIA, France)
Pascal Malterre (CEA-DAM, France)
Laurent Mounier (VERIMAG, France)
Stefano Di Paola (Minded Security, Italia)
Marie-Laure Potet (VERIMAG, France)
Paul Rascagneres aka r00tBSD (Malware.Lu, Luxembourg)
Sanjay Rawat (India)
Raphael Rigo (ANSSI, France)
Nicolas Ruff (EADS Innovation Works, France)
Steven Seeley aka Mr_Me (Immunity, US)
Fermin J. Serna (Google, US)
Nikita Tarakanov (Russia)

5 / 139 GreHack

GreHack 2013, Grenoble, France

1.7 Partners

We warmly thank them for their their financial and logistic support that was of great help!
!!

30/30!
!

64+bits+sponsors+
!

!

!

!

!

!

!

!

!

!

!

32+bits+sponsors+
!

!

!

16+bits+sponsors+
!

!

!

!

P*wn+me+I’m+famous+!+
2nd+Edition+

!
http://grehack.org/en/!

6 / 139 GreHack

GreHack 2013, Grenoble, France

Contents

1 Introduction 2
1.1 Epilog – Welcome from the PC Chairs . 2
1.2 Awards . 3
1.3 Organizing Committee . 3
1.4 Special Thanks . 4
1.5 In Memoriam Cédric “SID” Blancher . 4
1.6 Programme Committee . 5
1.7 Partners . 6

2 Invited Talks 9
2.1 Herbert Bos/ Tain’t not enough time to fuzz all the memory errors 9

2.1.1 Herbert Bos . 9
2.1.2 Tain’t not enough time to fuzz all the memory errors 9

2.2 Halvar Flake/ The many flavors of binary analysis . 10
2.2.1 Halvar Flake . 10
2.2.2 The many flavors of binary analysis . 10

2.3 Juan Caballero/ Specialization in the malware distribution ecosystem 11
2.3.1 Juan Caballero . 11
2.3.2 Specialization in the malware distribution ecosystem 11

3 Accepted Papers 12
3.1 Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Train-

ing and Assessment . 12
3.1.1 Markku-Juhani Olavi Saarinen . 12
3.1.2 Developing a Grey Hat C2 and RAT for APT Security Training and Assessment . . . 12

3.2 Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi . 25
3.2.1 Mathieu Cunche . 25
3.2.2 I know your MAC Address: Targeted tracking of individual using Wi-Fi 25

3.3 L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques 43
3.3.1 Ludovic Apvrille . 43
3.3.2 Axelle Apvrille . 43
3.3.3 Pre-filtering Mobile Malware with Heuristic Techniques 43

3.4 Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on
Binary Code . 60
3.4.1 Marie-Laure Potet . 60
3.4.2 Laurent Mounier . 60
3.4.3 Josselin Feist . 60
3.4.4 Statically Detecting Use After Free on Binary Code 60

3.5 Alejandro Nolla/ Amplification DDoS attacks with game servers 72
3.5.1 Alejandro Nolla . 72
3.5.2 Amplification DDoS attacks with game servers . 72

3.6 Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Con-
trollers . 84
3.6.1 Eireann Leverett, Reid Wightman . 84
3.6.2 Reid Wightman . 84
3.6.3 Eireann Leverett . 84
3.6.4 Vulnerability Inheritance in Programmable Logic Controllers 84

3.7 Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Pri-
vacy Leaks in the RATP App: how we proceeded and what we found 99
3.7.1 Jagdish Achara . 99
3.7.2 James-Douglas Lefruit . 99

7 / 139 GreHack

GreHack 2013, Grenoble, France

3.7.3 Vincent Roca . 99
3.7.4 Claude Castelluccia . 99
3.7.5 Detecting Privacy Leaks in the RATP App: how we proceeded and what we found . 99

3.8 Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of
vulnerable DNS servers using asynchronous I/O mechanism 116
3.8.1 Ruo Ando . 116
3.8.2 Yuuki Takano . 116
3.8.3 Satoshi Uda . 116
3.8.4 Unraveling large scale geographical distribution of vulnerable DNS servers using

asynchronous I/O mechanism . 116
3.9 Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect

yourself against physical access . 130
3.9.1 Guillaume Jeanne . 130
3.9.2 François Desplanques . 130
3.9.3 Attacks using malicious devices : a way to protect yourself against physical access . 130

4 GreHack 2013 organizers/ Thanks 138

5 Bonus 139
5.1 SecurityReactions / When the client asks me to verify their fix 139

8 / 139 GreHack

Herbert Bos/ Tain’t not enough time to fuzz all the memory errors GreHack 2013, Grenoble, France

2 Invited Talks

2.1 Herbert Bos/ Tain’t not enough time to fuzz all the memory errors

2.1.1 Herbert Bos

• General Co-Chair for EuroSys 2014

• Professor at VU University Amsterdam

• Three of his students have won the ACM SIGOPS Eurosys Roger Needham Award for best Ph.D.
thesis in computer systems in Europe.

• Ph.D. from Cambridge University (UK)

2.1.2 Tain’t not enough time to fuzz all the memory errors

In this talk, I will discuss the past, present, and future of memory errors, and some of the projects in my group
that build on information flow tracking (sometimes referred to as taint analysis) to detect and stop memory
corruption attacks, These projects include plain old tainting solutions like Argos and Minemu, as well as
more elaborate defenses like BinArmor. Finally, I will discuss new work in my group on fuzzing for buffer
overflows (Usenix Sec’13) which combines taint analysis with symbolic execution and some cool heuristics
to track down those pesky overflows in real programs."

Talk can be downloaded from http://grehack.org

9 / 139 GreHack

http://grehack.org

Halvar Flake/ The many flavors of binary analysis GreHack 2013, Grenoble, France

2.2 Halvar Flake/ The many flavors of binary analysis

2.2.1 Halvar Flake

Funny bio from Syscan’13: “Halvar needs no introduction... but I’m going to give him one just to be irritating.
A mathematician at heart, Halvar really wants nothing more in life than for things to work just as they should,
and for there to be cake afterwards. However, having not revolutionized mathematics by the age of 20, he
wisely decided to turn his hand to revolutionizing reverse engineering instead. Since then, he has spent years
eviscerating software, building tools that sucked less than all the existing ones and relentlessly pointing out
all of the areas where our approaches just aren’t working. I pine for a softer, kinder world where formal
methods solved everything, other people’s software didn’t suck so damn much, and gentle giants like Halvar
would be free to read poetry and eat their cake in peace.:(”

• founder of Zynamics ... you know BinDiff :)

• encouraging female reverse engineers

• researcher at Google, quoting Halvar’s linkedin “now we can do real computations”

• twitter: @halvarflake

2.2.2 The many flavors of binary analysis

TBA
Talk can be downloaded from http://grehack.org

10 / 139 GreHack

http://grehack.org

Juan Caballero/ Specialization in the malware distribution ecosystem GreHack 2013, Grenoble, France

2.3 Juan Caballero/ Specialization in the malware distribution ecosystem

2.3.1 Juan Caballero

Juan Caballero is an Assistant Research Professor at the IMDEA Software Institute in Madrid, Spain. His
research focuses on security issues in systems, software, and networks. He received his Ph.D. in Electrical
and Computer Engineering from Carnegie Mellon University, USA on 2010 and was a visiting researcher at
University of California, Berkeley for two years. His research has appeared (and has won best paper awards)
at top security venues. He has been in the technical committee of venues such as IEEE S&P, NDSS, WWW,
RAID, and DIMVA. He is program co-chair for the Digital Forensics Research Symposium (DFRWS) for
2013 and 2014.

2.3.2 Specialization in the malware distribution ecosystem

In the cybercrime ecosystem attackers have understood that tackling the entire monetization chain is a daunt-
ing task requiring highly developed skills and resources. Thus, specialized services have emerged to out-
source key parts to third parties such as malware toolkits, exploit marketplaces, and pay-per-install services.
Such outsourcing encourages innovation and specialization, enabling attackers to focus on their end goals.
This talk describes our research into the specialized services dominating malware distribution.

Talk can be downloaded from http://grehack.org

11 / 139 GreHack

http://grehack.org

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

3 Accepted Papers

3.1 Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security
Training and Assessment

3.1.1 Markku-Juhani Olavi Saarinen

Dr. Markku-Juhani O. Saarinen is a Research Scientist. He has worked as a Security Engineer, Consultant
and an Academic in the Information Security space for about 15 years. He has authored some 30 peer-
reviewed research papers (mainly on breaking symmetric ciphers) but also maintains a well-rounded skill set
related to real-life hacking and security engineering.

Markku started out as a software engineer and cryptographer with SSH Communications Security in
1997, where he helped to build the now-ubiquitous SSH2 protocol. After couple of years with Nokia Research
and some academic projects, he left to do security consulting in the Middle East in 2004. He operated as a
Penetration Testing professional, Security Auditor (PCI DSS QSA) and built custom network filtering and
monitoring solutions. He enrolled as a part-time student in the Royal Holloway (University of London)
Information Security Ph.D. program in 2005 while continuing to do consulting.

Dr. Saarinen graduated in 2009 with a thesis on Hash Function Cryptanalysis. Prior to joining Temasek
Labs @ NTU, he was a Principal Investigator of a DARPA-Funded lightweight cryptography research project
with (now defunct) Revere Security Corp. of Texas, USA and a Freelance security analyst with Help AG,
Dubai.

3.1.2 Developing a Grey Hat C2 and RAT for APT Security Training and Assessment

We report on the development of a Remote Access Tool (RAT) and related Command and Control (C2) sys-
tem for the purposes of simulating Advanced Persistent Threat (APT) attacks during security audits. The
system, a set of tools collectively called HAGRAT, is a clean-slate in-house development and remarkable
for its compact size. As such, it is backdoor-free and not readily identifiable by Anti-Malware and Intrusion
Detection tools (as it has not been indiscriminately distributed). We discuss the design requirements, imple-
mentation and the actual the effort required todevelop such software.

• Talk and paper can be downloaded from http://grehack.org

12 / 139 GreHack

http://grehack.org

Developing a Grey Hat C2 and RAT for
APT Security Training and Assessment

Markku-Juhani O. Saarinen ?

<mjos@cmdctrl.cc>

cmdctrl.cc

Abstract. A Remote Access Tool/Trojan (RAT) is a program that allows an ex-
ternal (malicious) operator to invisibly control a host. The operator may examine
the system contents, transfer files, and run tools such key- and network sniffers
to gain further access. RATs are often inserted on targets by forged e-mails or by
utilizing operating system vulnerabilities. The RAT, upon execution, will contact
an external Command and Control (C2) service which allows prolonged, virtu-
ally untraceable control over the system. RATs have been used in recent years
in many high-profile espionage and financial attacks. To evaluate the prepared-
ness of an organization to detect and counter such a targeted, persistent threat,
a special penetration testing (PENTEST) exercise can be organized. Most RATs
currently come from underworld sources and have backdoors, bugs, and security
weaknesses; utilizing such a RAT in a live security exercise would be extremely
risky. We report on the development of a new “professional” RAT and related C2
system for the purposes of simulating Advanced Persistent Threat (APT) attacks
during security audits. The system, a set of tools collectively called HAGRAT,
is a clean-slate in-house development. As such, it is backdoor-free and not read-
ily identifiable by Anti-Malware and Intrusion Detection tools as it has not been
indiscriminately distributed. The target RAT is remarkable for its compact size
and advanced stealth features such as encryption and WinINet (HTTP) proxy and
firewall tunneling. We discuss the design requirements, implementation and the
actual the effort required to develop such software.

Keywords: Targeted Attacks, Remote Access Trojans, Command and Control, Pene-
tration Testing, HAGRAT.

1 Introduction

During the last decade information security threats have evolved from indiscriminate
virus outbreaks and random opportunity hacks towards more organized and customized
exploitation [1].

The most popular attack vector in targeted attacks is a specially crated e-mail that
carries malware payload, called Spear Phishing (Figure 1) [2, 3]. The payload may uti-
lize a security vulnerability on the target system to execute itself (PDF vulnerabilities
having been specially popular), or simply trick the target into executing it [4].
? The development work reported in this paper was performed between March and May 2013

when the author was under contract with HELP AG Middle East, Dubai, UAE.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

13 / 139 GreHack

 Attack Operator Identified Target User

 From: boss@my.org
 Subject: Mucho Importante!

hagr4t.pdf

Forged e-mail that drops the RAT

Fig. 1. Spear Phishing is based on specially crafted forged e-mails that carry malware.

1.1 Compliancy is not Enough

It has been observed that threats of this type are not adequately addressed with standard
information security best practices. To illustrate this point, we observe where some of
the key controls specified in the Payment Card Industry (PCI) Data Security Standard
(DSS) [5] fail against targeted and persistent attacks:

– Firewalls (PCI DSS Req. 1) The attacks are not based on scanning the targets
from the Internet; instead a malicious payload is dropped on the target which then
establishes a surreptitious outbound connection to a Command and Control service.

– Anti-virus software (PCI DSS Req. 5) The attackers can customize their attack
tools for the target in order to avoid detection by general-purpose anti-malware
software.

– Keeping systems up-to-date (PCI DSS Req. 6) After an initial entry vector has
been found, perhaps via social engineering, APT operatives maintain a persistent
presence at the target systems and hence further exploitation is not necessary. Sys-
tems remain vulnerable despite updates.

– Vulnerability scans (PCI DSS Req. 11) Penetration testing and vulnerability as-
sessment are some the most effective methods for closing down holes in systems
and applications. However, vulnerability scanners only find known security vulner-
abilities and are not helpful against social engineering or custom payload insertion.

1.2 Simulating APT in a Security Audit

The security industry often categorizes targeted, organized and customized attacks as
Advanced Persistent Threats (APTs) [1, 6].

Following the well-known philosophy of “Improving the Security of a Site by Break-
ing Into It” [7], an organization may wish to test its readiness for ATP threats by asking
a trusted external party to simulate such an attack as a Red Team.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

14 / 139 GreHack

The U.S. security consultancy Mandiant and others generally recognize the follow-
ing steps in the lifecycle of an ATP attack with long-term objectives (steps adopted from
Appendix B of [3]):

1. Initial Compromise. The initial intrusion methods tend to be at least partly based
on social engineering such as Spear Phishing where tailored messaging is used
to activate malicious payload on target. Even physical access to target premises
(“walking or talking oneself to the office”) can be an effective option.

2. Establish Foothold. Foothold is established via RATs (Remote Access Tools / Tro-
jans) or other persistent software that is operated via an outbound connection, typ-
ically to a custom Command & Control infrastructure.

3. Escalate Privileges. The operator aims to further her access by examining the con-
figuration or via basic hacking techniques such as exploiting local password weak-
nesses or sniffing the network or keyboard for passwords.

4. Internal Reconnaissance. Mapping of the target infrastructure; services and servers,
tunnels, proxies etc. Standard system commands may be augmented with uploaded
custom mapping tools.

5. Move Laterally. Move closer to “targets of interest” by using stolen credentials or
other similar information to further internal access.

6. Maintain Presence. Via installation of varied low-level back-doors or even entirely
new attacker-controlled user accounts.

7. Complete Mission. Get the “loot” data out of the target environment. Clean up all
traces of intrusion, if possible.

With careful planning and by using trusted tools such as the one described in this
paper, the operational risks of such exercises can be minimized even in live production
environments.

1.3 Tools for APT Security Audit

Tools used for such intrusions can be roughly divided into Reconnaissance, Presence
Maintenance and Mission Completion tools (Appendix C of [3]). The work described
in this paper falls into the latter two categories.

In a way, the HAGRAT target payload serves a similar purpose to the Meterpreter
payload of the popular Metasploit framework [8, 9]. However, Meterpreter lacks C2
functionality and is recognized by many anti-malware tools. However, Metasploit and
the related Social-Engineer Toolkit (SET) [10] can be used for insertion of HAGRAT
payload.

Even government-linked operatives are known to have used tools that originate from
underworld sources, such as the Poison Ivy and Gh0st RATs and various Exploit toolk-
its [3]. However there are inherent risks in using such tools against friendly targets as it
is possible that hidden functionality exists in such software even if “full” source code is
obtainable.

In a recent 2013 case, Paul Rascagnéres and others from malware.lu used infor-
mation provided in the Mandiant APT1 report [3] and scanned for the APT1 Poison
Ivy command network [11]. Using a well-known remote code execution security flaw

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

15 / 139 GreHack

in the Poison Ivy C2 (Andrzej Dereszowski 2010 [12]), and an ingeniously decrypted
access password, the analysts hacked the APT1 command infrastructure, apparently ran
by Chinese agents. This lead to discovery of active targets and additional malware tools
used by the malicious party.

Often the source code of these tools is of poor quality, poorly documented (or solely
in Russian) and essentially unauditable – we have examined the leaked source codes of
Carberp, Zeus, UrSnif, and Citadel malware families [13] and found this to be the
case. The Poison Ivy vulnerability [12] was found by fuzzing and therefore source code
was not needed.

There are inherent reliability and legal issues in using black market software for
commercial penetration exercises. Note that our own binary executable does not make
any special attempt to hide its origin or purpose as it contains relevant Copyright strings
and is intended solely for legitimate use at the request of the organization itself.

For security audit purposes, a clean-slate target RAT is not only safer, but it is also
less likely to be detected by anti-malware tools as it has never been used indiscrimi-
nately. The RAT can be tailored for a specific target, operation, or exercise.

2 Requirement Specification

After initial discussions with Help AG Security analysts 1, the main initial requirements
for the tool were identified as:

1. Command-line access. Allows the operator to examine the target system and files
contained therein.

2. Remote program execution. Facilitate operation of “plugin” tools on target system
for additional functionality.

3. Targeted Binaries. Encoding mechanism for C2 server address, persistence mech-
anism, and other configuration information into the RAT binary executable itself.

4. File Transfer. File upload / download from the operator system via C2 without
additional tools or services.

5. A Control Terminal. An intuitive remote control operator interface that connects
to the C2 component from a remote location.

6. Communications Security. Strong encryption and authentication of all traffic. The
protocol should not be readily identifiable by packet sniffers and network analyzers.

7. Firewall Penetration. HTTP control channel with the Windows system Proxy set-
tings and credentials in order to effectively penetrate through firewalls.

8. Alerts. System can be configured to issue an alert message such as an e-mail when
a specific RAT becomes active and the target system can be accessed.

9. Automation. Script system that allows automatic intelligence gathering from target
systems.

10. Limited Persistence. A persistence mechanism and an automatic “self-destruct”
feature which erases the RAT from the target system after a specified date.

1 Help AG is a Dubai-based security consultancy, http://www.helpag.com

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

16 / 139 GreHack

 Operator
(hrterm)

Target
(hagr4t.exe)

Firewall

C&C Server
(hrccd)

Outbound HTTP

Control

Control
Protocol

Target
(hagr4t.exe)

Fig. 2. HAGRAT Command and Control (C2) infrastructure. Upon execution the RAT at target
will connect to the C&C server through an outbound encrypted HTTP connection. The Operator-
controlled C&C server will respond back with instructions and data.

The requirements above were seen as the core RAT functionality. Additional exe-
cutable components for e-mail access, credential stealing, keyboard and network sniff-
ing, remote desktop etc, can be uploaded and activated after sufficient intelligence is
gathered by the operator.

2.1 Technical Choices

It was agreed that the target binary should be a stand-alone executable runnable on
Windows XP, Windows 7, and Windows 8 targets. The server-side development would
be on a Linux platform. This selection was based on the observation that these servers
are Internet-facing and should be fully controllable via the command line.

No specific evasion or insertion mechanisms were specified for the RAT component
as these are to be dynamically created, depending on the target. However, the small
executable size allows insertion of our RAT as a payload using a wide spectrum of
insertion vectors (unlike some targeted tools which measure in megabytes [14]).

3 Architecture and Components

The system has a highly configurable client-server architecture. A single server can
manage any number of RAT instances.

Figure 2 shows the basic HAGRAT infrastructure. After the RAT payload has been
inserted on target and executes, it establishes an authenticated outbound HTTP connec-
tion through firewall to the C2 server. The operator can then interact with the target
through HTTP replies.

From implementation viewpoint, the system consists of seven binary executables:

1. hagr4t.exe is a small Windows executable that allows remote control of the target
system by contacting the C2 server.

2. hrccd (HR Command and Control Daemon) manages multiple simultaneous en-
crypted connections.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

17 / 139 GreHack

3. hrterm is a terminal control interface that allows an operator to control target RAT
instances through hrccd.

4. hrhts (HR HTTP Tunneling Server) implements HTTP tunneling in the server end.

The following two components fulfill internal tasks at the server end:

5. hrcomm works in the server to pair a terminal session with the desired target sys-
tem via UNIX domain sockets.

6. hrxfer is a helper utility that allows server-side target intelligence gathering and
initialization scripts to exchange files with a RAT target.

Furthermore there is an auxiliary utility:

7. hardcode Allows insertion of configuration strings and other targeting information
into a compiled hagr4t.exe binary.

3.1 Development Process

The small RAT component (1) is primarily targeted to Windows XP and Windows 7/8
systems. This executable is only about 12 kB in size, yet does not require any special
auxiliary components or libraries. This has been achieved by linking it with a cus-
tomized minicrt.lib runtime library rather than the bloated standard CRT files.

All components have been written in standard ANSI C to facilitate portability and
maintenance. Free Microsoft Visual Studio 2012 Express for Windows Desktop (Ver-
sion 11.0.51106.01 Update 1) was used to create and compile hagr4t.exe.

The server-side components (2-6) would typically reside on a Linux system. How-
ever, they can be trivially ported to other Linux-like platforms and also to Windows
via the cygwin compatibility layer. In addition to standard libc runtime components,
ncurses5 and/or terminfo development libraries are used.

Installation is easy on arbitrary UNIX systems for which compilation tools and a
command line interface exist. Virtually any cloud or bulletproof hosting provider would
do. Root-level permissions are only required if a privileged port (such as 80) are used. It
is therefore easy to hide C2 components on compromised UNIX hosts inside the target
network, if necessary.

3.2 Secure Communications: BLINKER and CBEAM

For a secure communications protocol we decided to avoid the SSL protocol as it leaks
quite a bit of signature information during handshake and requires a cumbersome certifi-
cate set-up. Furthermore antivirus and anti-malware software may hook the SSL system
calls and obtain access to plaintext that way. Operating system security services were
only used as a PRNG source for generation of session keys.

Instead we opted for a lightweight handshake protocol based on symmetric ci-
phers and fast set-up, called BLINKER [15]. Authentication is based on high-entropy
shared secrets and randomized challenge-response mechanism. BLINKER is signifi-
cantly faster than SSL to set up and we are able to run it over a pure HTTP (port

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

18 / 139 GreHack

80) tunnel, thereby enabling secure communications even when a firewall detects and
blocks HTTPS.

The project gave the author a suitable opportunity to field a variant of experimental
authenticated encryption algorithm CBEAM [16]. Note that the encryption algorithm is
rarely the weak spot in a system such as this one. It is very telling that the FLAME [14]
intelligence gathering malware used five different weak ad hoc encryptors.

The CBEAM and BLINKER source code (530 lines) is shared between the Win-
dows component hagr4t.exe and the Linux server component hrccd.

3.3 Windows Codebase

Only about 1000 lines of code were required for basic RAT footholding functional-
ity, including encryption, client-side HTTP tunneling, proxy authentication, and file
transfer functions. The Windows side may require multiple processes to run (one for
CMD.EXE, and another for HTTP tunnel etc); the interprocess communication is han-
dled with local stream sockets (equivalent to TCP) as this was found to be the most
reliable and portable method across Windows variants.

3.4 Server Codebase

The code specific to server side operations is about 1840 lines. Various functions are
grouped together into five separate C files. By default a singular configuration file
hrsecret.cfg is used to store all authentication credentials (for RATs and Termi-
nals alike) and various automation and alert rules.

The server side is designed to be run as user-space processes. However it may be
necessary to invoke hrhts as root if one wants it to answer to privileged HTTP port
80. The interprocess communication between hrccd and hrconn is handled via pipes
and environment variables; the hrconn instances talk to each other via UNIX domain
sockets in /tmp.

3.5 Parameter Encoding
The number of supplied parameters defines the mode of operation of hagr4t.exe. There
are five variations depending on desired functionality:

hagr4t [f] <port>:<url>
hagr4t [f] <host> <port>
hagr4t [f] <url> <id> <key> [date]
hagr4t [f] <host> <port> <id> <key> [date]
hagr4t [f] <host> <port> <id> <key> <date> <host:port>

The variants enable plain HTTP tunneling, a plaintext TCP outbound shell, a HTTP
tunneled encrypted command channel, direct TCP outbound encrypted command chan-
nel, and optional specification of kill dates and HTTP proxies. Normally operating sys-
tem / Internet Explorer configuration is used for Proxies and Proxy credentials.

The hardcode utility allows embedding of command line parameters so that they
do not have to be encapsulated in a script on target platform. The encoding tool itself
is simple (40 lines) as its only function is to insert a null-terminated parameter set from
the command line to the appropriate position inside the hagr4t.exe binary.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

19 / 139 GreHack

3.6 Firewall Penetration with HTTP Tunneling

Many of our targets employ tight firewall configurations that do not allow direct TCP
connections to the outside. Furthermore http proxies may be configured to limit the
range of accessible secure hosts.

We found that the best solution for outward penetration of firewalls is to use the
wininet.dll library [17]. Using this method, we are able to use the Internet Ex-
plorer proxy configuration and even authentication credentials via certain options in the
InternetErrorErrorDlg() system call:

err = InternetErrorDlg(GetDesktopWindow(), hreq,
ERROR_INTERNET_INCORRECT_PASSWORD,
FLAGS_ERROR_UI_FILTER_FOR_ERRORS |
FLAGS_ERROR_UI_FLAGS_GENERATE_DATA |
FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS, NULL);

Proxy credentials are stored in an inconspicuous location in the system registry for
further reference. Binary communications are then wrapped into HTTP 1.1 persistent
connections where two-way communication can be performed with the POST method.

The hagr4t.exe client sends data as follows to hrhts at 172.16.109.1, port 80:

POST / HTTP/1.1
User-Agent: Mozilla/5.0 (copied from IE)
Host: 172.16.109.1:80
Content-Length: 137
Connection: Keep-Alive
Cache-Control: no-cache

Data: 09 A2 8B 18 4D 3C .. (total 137 bytes of data)

The hrhts responds with data within the 200 OK message:

HTTP/1.1 200 OK
Content-Length: 6
Connection: Keep-Alive

Data: 09 48 0B 52 B4 F8

Since communication of this type is essentially half-duplex, a flow control mecha-
nism had to be implemented. We used a method where flow is controlled by the server
(hence giving an operator instant feedback), with exponentially increasing delay up to
500 milliseconds.

3.7 Work Required

The entire project is about 3500 lines of code and configuration and does not use any
nonstandard libraries (the encryption code is built-in). A total of 264 man-hours were
billed for the work during a period of about 10 weeks. This included all development,
research and documentation work from scratch. This metric is indicative of the general
difficulty of development (“start-up costs”) of new families of such targeted attacks.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

20 / 139 GreHack

Fig. 3. In this screenshot the hrccd startup and successful connection and authentication by both
hagr4t.exe and hrterm control terminal to the C2 are displayed together with the hrsecret.cfg
file.

Comparison. Ukrainian newspaper sources indicate that the “carberp” botnet creation
kits were coded by a loose group of at least twenty individuals [13, 18].

We have analyzed the Carberp, Zeus, UrSnif, and Citadel malware kits and found
these to be of largely non-professional quality. The codebase may appear to be large
but much of this consists of customization such as bank-specific injectors. Examined
trojans tend to have an appearance of a “hack” in the bad sense of the word.

4 Example of Usage

Under byobu persistent text window manager, we first launch hrccd at the server sys-
tem 172.16.109.1. TCP port 17409 is used by default. A screenshot of hrccd is provided
in Figure 3.

$./hrccd
hrccd v1.130600 (c) Help AG FZ LLC ** CONFIDENTIAL **
05:26:19.345 [12049] all:all starting listener at port 17409

The C2 system was fielded on a Amazon Web Services Ubuntu Microinstance. We
will be using the HTTP tunnel hrhts in our example. Note that it is safe to have hrhts
running in arbitrary external hosts to masquerade the true location of the C2 system as
a hrhts installation does not require storage of client or server secrets – it is simply

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

21 / 139 GreHack

Fig. 4. In this screenshot the hrterm utility is invoked to contact hrccd (a HAGRAT server) which
happens to be running on the same system. Upon connection, hrconn asks the operator to choose
from a list of RAT instances; there is only one available.

translating from HTTP to TCP and back. A loss of a hrhts forwarding node has little
impact on the C2 network.

We launch hrhts in verbose mode to complete the initialization of the server side:

$./hrhts 80 127.0.0.1 17409 verb
HRHTS: I am at port 80, destination is 127.0.0.1:17409.

On the the target Windows 7 host 172.16.109.129, hagr4t.exe is invoked with command
line parameters that specify that a HTTP communications channel should be used to
172.16.109.1, port 80. Authentication to C2 is done with identifier ”win7test” and with
secret ”0SDYNIKHG3PPVU40D0RNCA3AT”.

> hagr4t
http://172.16.109.1:80 win7test 0SDYNIKHG3PPVU40D0RNCA3AT

Now the operator may connect to the Command and Control system with hrterm and
choose the target system. Note that hrterm requires its own set of credentials.

A screenshot of this is provided in Figure 4. The operator proceeds to download
the hagr4t.exe file from the execution directory using the !get command (HAGRAT
commands are prefixed with the exclamation mark “!”).

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

22 / 139 GreHack

5 Future Projections and Work

Cyber-espionage is, by far, the most cost-effective and method of obtaining protected
information, while carrying the lowest political or legal risk. We estimate that the cur-
rent generation of trojans will continue to explosively progress in sophistication in im-
mediate future (2014-2015) as more resources become available for development.

As for the development of HAGRAT, we will add polymorphism and more advanced
code update methods. Experiences with APT1 attacks have showed that renewed cam-
paigns seem to be possible with only minor tweaks to the attack payloads [4].

We do not feel that wider dissemination of the HAGRAT source code would serve
any useful purpose. However we have discovered that even rather modest resources
enable development of effective cybermunitions as there are very few actual “secrets”
needed for this work. The start-up costs are minimal.

6 Conclusions

We have described development of a Grey Hat tool to simulate Advanced Persistent
Threats in penetration testing. Development of such a tool is necessary as most current
tools come from underworld sources and have bugs and backdoors in addition to be-
ing detectable by anti-malware software. Development of experimental software of this
type also sheds light on the resources required, which appear to be fairly small.

Tools readily exist for network mapping and reconnaissance, vulnerability scanning,
and other network-side security analysis. Instead we concentrated on footholding and
persistence enablers such as Remote Access Trojans/Tools (RATs), which are the sig-
nature element of Advanced Persistent Threats (APTs). We found that development of
such tools does not have to rely on extensive “hacking tricks”. Correct use of operating
system calls and clean programming practices are usually preferable in order to avoid
detection. We found that creating HTTP-encapsulated outbound traffic with the POST
method using the standard WinInet library (and proxy settings) penetrates most firewalls
very efficiently as it appears indistinguishable from normal web browsing activity.

As evidenced by leaked trojan source codes and reverse engineering, opportunistic
underground hackers tend to be relatively inexperienced and undisciplined in software
development. Any seasoned software developer with experience in low-level system
programming is equally, if not better, equipped to develop tools that are useful in Ad-
vanced Persistent Threat (APT) simulation for Security Audits. The relevant require-
ment of these systems is not in 0-day exploits as foothold is often achieved via social
engineering, but in effective communication protocols and reliability.

It seems obvious that even organizations with limited resources are able to indige-
nously develop sophisticated cybermunitions in the current Internet environment. As
the Grey Hat market for such software components increases, we can expect their com-
plexity to grow exponentially as more professional non-underground developers, bigger
development teams and budgets become available.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

23 / 139 GreHack

References

1. Bodmer, S., Kilger, M., Carpenter, G., Jones, J.: Reverse Deception: Organized Cyber Threat
Counter-Exploitation. McGraw-Hill (2012)

2. TrendLabs: Spear-phishing email: Most favored APT attack bait. Trend Micro Inc Report
(2012)

3. Mandiant: APT1 – exposing one of china’s cyber espionage units. Mandiant Intelligence
Center Report (February 2013)

4. Guarnieri, C.: Upcoming G20 summit fuels espionage operations. Rapid7 Security Street
Blog (August 26, 2013)

5. PCI: Payment Card Industry (PCI) Data Security Standard - Requirements and Security
Assessment Procedures, Version 2.0. (October 2010)

6. Hutchins, E.M., Clopperty, M.J., Amin, R.M.: Intelligence-driven computer network defense
informed by analysis of adversary campaigns and intrusion kill chains. In Armistead, E.L.,
ed.: Proceedings of the 6th International Conference on Information Warfare and Security,
Academic Conferences Limited (March 2011) 113–125

7. Farmer, D., Venema, W.: Improving the security of your site by breaking into it (December
1993)

8. Moore, H., Rapid7: Metasploit framework. http://www.metasploit.com/
9. Kennedy, D., O’Gorman, J., Kearns, D., Aharoni, M.: Metasploit: The Penetration Tester’s

Guide. No Starch Press (2011)
10. TrustedSec: Social-engineer toolkit (SET). https://www.trustedsec.com/

downloads/social-engineer-toolkit/
11. Rascagnéres, P.: APT1: Technical backstage. Presentation HITCON, Taiwan (July 2013)
12. Dereszowski, A.: Targeted attacks: From being a victim to counter attacking. Black Hat

Europe 2010 (March 2010)
13. Krebs, B.: Carberp code leak stokes copycat fears. http://krebsonsecurity.com/

2013/06/carberp-code-leak-stokes-copycat-fears/ (June 27, 2013)
14. sKyWIper Analysis Team: sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex malware for

targeted attacks (May 2012) http://www.crysys.hu/skywiper/skywiper.pdf.
15. Saarinen, M.J.O.: Beyond modes: Building a secure record protocol from a cryptographic

sponge permutation. Submitted for publication. (September 2013)
16. Saarinen, M.J.O.: CBEAM: Efficient authenticated encryption from feebly one-way phi

functions. Submitted for publication. (September 2013)
17. Microsoft: WinINet reference. http://msdn.microsoft.com/en-us/library/

windows/desktop/aa385483(v=vs.85).aspx (October 2012)
18. Ryabchun, J.: A group of hackers neutralized (April 2, 2013) In Russian: http://www.

kommersant.ua/doc/2160535.

Version 20131008214200

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and
Assessment GreHack 2013, Grenoble, France

24 / 139 GreHack

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

3.2 Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using
Wi-Fi

3.2.1 Mathieu Cunche

Mathieu is an associate professor at INSA-Lyon and is part of the Inria Privatics team. He is interested
in all things related to Privacy, Security, Wireless Networks and Applied Cryptography. Finding Internet
connectivity anywhere in the world and reading raw pcap files are his two most famous skills. As a side
activity, he is a semi-professional WAR-surfer and WAR-snowboarder. And above all, he loves it when a
plan comes together.

• twitter: @Cunchem

• http://mathieu.cunche.free.fr

3.2.2 I know your MAC Address: Targeted tracking of individual using Wi-Fi

This work is about wireless communications technologies embedded in portable devices, namely Wi-Fi,
Bluetooth and GSM. Focusing on Wi-Fi, we study the privacy issues and potential missuses that can affect
the owners of wireless-enable portable devices. WiFi enable-devices periodically broadcast in plain-text their
unique identifier along with other sensitive information. As a consequence, their owners are vulnerable to a
range of privacy breach such as the tracking of their movement and inference of various private information
[9, 7]. As serious as those information leakage can be, linking a device with an individual and its real world
identity is not a straightforward task. Focusing on this problem, we present a set of attacks that allow an
attacker to link a Wi-Fi device to its owner identity. We present two methods that, given an individual of
interest, allows to identify the MAC address of its Wi-Fi enabled portable device. Those methods do not
require a physical access to the device and can be performed remotely, reducing the risks of being noticed.
Finally we present scenarios in which the knowledge of an individual MAC address could be used for mis-
chief.

• Talk and paper can be downloaded from http://grehack.org

25 / 139 GreHack

http://mathieu.cunche.free.fr
http://grehack.org

I know your MAC Address: Targeted tracking of
individual using Wi-Fi

Mathieu Cunche

Université de Lyon, INRIA,
INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France

mathieu.cunche@inria.fr

Abstract. This work is about wireless communications technologies em-
bedded in portable devices, namely Wi-Fi, Bluetooth and GSM. Focus-
ing on Wi-Fi, we study the privacy issues and potential missuses that
can affect the owners of wireless-enabled portable devices. Wi-Fi enable-
devices periodically broadcast in plain-text their unique identifier along
with other sensitive information. As a consequence, their owners are vul-
nerable to a range of privacy breach such as the tracking of their move-
ment and inference of private information [10, 7]. As serious as those
information leakage can be, linking a device with an individual and its
real world identity is not a straightforward task. Focusing on this prob-
lem, we present a set of attacks that allow an attacker to link a Wi-Fi
device to its owner identity. We present two methods that, given an
individual of interest, allow identifying the MAC address of its Wi-Fi
enabled portable device. Those methods do not require a physical access
to the device and can be performed remotely, reducing the risks of be-
ing noticed. Finally we present scenarios in which the knowledge of an
individual MAC address could be used for mischief.

1 Introduction

Wi-Fi technology is the main solution for medium range communications, and
is embedded in more and more smart objects. In particular most smart-phones
possess a Wi-Fi network interface that allows getting a cheapest and fastest
access to the Internet than GSM technologies.

Wi-Fi is today featuring robust encryption/authentication mechanisms that
ensure that the data is securely transmitted of the wireless channel. However,
recent works have shown that those Wi-Fi enabled devices are a threat to their
owners’ privacy. For instance, the name of the previously accessed network can
be found unencrypted in some management frames and can be used to infer
various private information [10] on the owners such as social links [7].

In addition, if the payload of some Wi-Fi frames can be encrypted, the header
is always transmitted in clear. This means, that the MAC address of the devices,
a unique identifier, can be collected and used to uniquely identify the device’s
owner. Emission of Wi-Fi frames is not limited to the time when the device
is connected to a Wi-Fi network. In fact, due to an active service discovery

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

26 / 139 GreHack

enabled on most devices, Wi-Fi interfaces are periodically broadcasting frames
containing their MAC address. As a result, a device with a Wi-Fi interface
turned-on, act as an actual wireless beacon by periodically advertising in clear
a unique identifier. This is also true for other technologies such as GSM and
Bluetooth that periodically send in clear a unique identifier (MAC address for
Bluetooth and TMSI for the GSM). Therefore, part of the methods presented in
this work could be extended to these other RF technologies.

Thanks to those wireless beacons that we are carrying in our pockets, Radio-
Frequency tracking (RF-tracking) is now possible. A number of researchers and
hackers have started to demonstrate such system to gather mobility data-sets
or to increase privacy awareness on this topic [11, 12]. Beyond those scientific
works and demonstration, wide scale commercial application of RF-tracking are
already up and running. For example, RF-tracking is used in traffic monitoring
application, for which it provides traffic information such as point-to-point travel
time and traffic intensity [2]. It is also used to monitor people activities within
retail stores and shopping centres [3]. Indeed deployed in these locations, RF-
tracking systems collect information about customers’ flows and their shopping
habits.

If RF-tracking allows tracking of individuals based on a unique identifier, the
link to a real identity is not directly available. In this work we are considering
the problem of finding the link between a MAC address broadcasted by a device,
and the identity of its owner. More particularly, given a person of interest, the
target, we are willing to obtain the MAC address of its Wi-Fi enabled portable
device.

To achieve this goal we propose to use a combination of wireless technol-
ogy hacking along with physical and social actions. Furthermore, in order to
ensure the practicality of our proposal, we aim at designing methods having the
following properties:

– Accuracy : the obtained MAC address must belong to the target with a high
probability;

– Stealthiness: the attack must remain unnoticed by the target.

The contributions of this work are the following. We present two methods
achieving the aforementioned goals, i.e. establishing, with a high probability
and stealthily, the match between an individual’s identity and a wireless de-
vices unique MAC address. The first method named Wi-Fi AP Replay attack
impersonates the networks to which the target has been previously connected
to, in order to identify its MAC address. The second attack called Stalker attack
consists in monitoring the Wi-Fi channel while following the target in a public
space, and to latter identify its MAC address by analysing the captured trace. In
addition we present a set of scenarios in which the knowledge of an individual’s
MAC address could be useful to breach privacy or to do mischief.

The paper is organized as follows. Section 2 presents an introduction to the
Wi-Fi technology and associated hacking tools. A preliminary investigation on
information transmitted in plain text by Wi-Fi devices is done in Section 3.
Then two methods to identify the MAC address of an individual are presented

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

27 / 139 GreHack

in Section 4 and 5 present two attacks. Section 6 presents a number of malicious
applications and Section 8 concludes.

2 Background and problem statement

2.1 Wi-Fi technology

A typical Wi-Fi network in infrastructure mode is composed of an access point
(AP) to which a set of stations (device equipped with a Wi-Fi interface) are con-
nected. Wi-Fi technology is based on the 802.11 protocols family. Wi-Fi packets
are called frames and can be divided in 2 categories: data frames on one side and
management and control frames on the other side. Data frames are in charge
of carrying the actual data traffic while management and control frames serve
various purposes such as association, authentication and service discovery. If
the payload of data packets can be encrypted when security mechanisms are
enabled (WEP, WPA, etc.), frame header are always in clear, leaving all the
corresponding information available to eavesdroppers.

MAC address Amongst the multiple information contained in frame headers,
there are the source and the destination MAC addresses. A MAC address is a 48
bits number used to uniquely identify a network interface. MAC addresses are
attributed to interface vendors by block of 224. As a result the 24 leftmost bits
of a MAC address can be used to identify the interface’s manufacturer.

In any frame, the source address field of the header contain the MAC address
of the emitting interface. As noted before, the frame headers are never encrypted,
therefore the source MAC address is available in plaintext in all the frames
emitted by a device. This would be of limited importance if Wi-Fi devices where
emitting frames only when connected to a network, but in fact, because of service
discovery mechanisms, they transmit frames even when they are not connected.

Configured Network List Most operating systems are storing a list of wireless
networks to which the device have been connected to. This list is called the
Configured Network List (CNL) and contains information such as the network’s
SSID and its security features.

Service discovery The Wi-Fi technology features a service discovery mecha-
nism, which allows stations to discover the access points in range. Two variant of
service discovery are co-existing. In the first one, called passive service discovery,
APs are periodically advertising their presence by broadcasting beacon frames
containing various information (SSID, security features), while stations passively
listen to those beacons to discover APs in range. In the second, called the ac-
tive service discovery, the station plays an active role by periodically probing
the neighbourhood with probe request frames to which AP respond with probe
response frames.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

28 / 139 GreHack

A probe request frame includes an SSID field to designate the wireless net-
work sought by the device. A Wi-Fi device probes for network to which it has
been previously connected by circling through the CNL. By doing so, devices
are actually broadcasting in plaintext their connection history. In response to
obvious privacy issues [10, 7], a new convention have been adopted: stations can
send probe requests with an empty SSID field; and in return AP must respond
to them with a probe response even if the SSID field do not match their own
SSID. The resulting probe requests are called broadcast probe requests. As a con-
sequence, devices are not revealing their connection history anymore, but are
still periodically broadcasting their MAC address in clear.

2.2 Wi-Fi tracking

As noted before, the MAC address of a wireless device constitutes an excellent
unique identifier to track its owner. In fact MAC address of wireless devices are
collected and stored by several systems.

A first example is the network infrastructure that is often storing informa-
tion on the device that are connecting to it. For instance logs of wireless routers
include the MAC address of all the devices that have been connected. Those
logs contains event related to management aspect of the wireless network (as-
sociation, authentication, disconnection, etc.) and each event associates a mac
address with a timestamp.

The second example is the Radio-Frequency tracking systems [12] that are
specifically designed to track the movement of individuals thanks to the wireless
devices that they are wearing. Those systems are based on a set of sensors
collecting wireless signals that triangulate and track over time the movement
of individuals. Those systems are deployed in areas such as shopping centres,
museum, roads where they provide valuable information on mobility patterns
and shopping habits1.

We can also add tracking systems deployed by criminals, spies, stalkers or
any curious person. Indeed as the next section will show, collecting radio sig-
nal emitted by personal wireless devices does not require advanced skills nor
expensive tools. Therefore, tracking systems can be easily deployed using cheap
hardware and open-source software such as Snoopy [8].

2.3 Wi-Fi hacking tools

In wireless communications protocols, the security is of prime importance. As
a consequence a number of penetration tools have been developed to test the
security of wireless networks. Focusing on the Wi-Fi technology, an auditing soft-
ware suite called aircrack-ng [1] is freely available and extensively documented.
Along with this software, drivers supporting raw traffic monitoring have been

1 Examples of commercial RF-tracking systems: Navizon ITS (http://www.navizon.
com/product-navizon-indoor-triangulation-system), Euclyd-Analytics (http:
//euclidanalytics.com/)

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

29 / 139 GreHack

developed. Thus a compatible wireless interface combined with the associated
monitoring mode driver and aircrack-ng suite is sufficient to capture Wi-Fi traffic
and perform a wide range of attacks.

In this work we used the aircrak-ng suite along with the network protocol
analyser tshark [3] (the command line version of wireshark). Using appropriate
filters we have design a tool capturing the MAC address of the Wi-Fi devices
along with other private information such as SSIDs probed by those devices.
Figure 1 presents a screenshot of an anonymized2 capture displaying for each
device in range the device manufacturer, the device mac address, the received
signal strength along with the number and the list of associated SSIDs.

total number of devices : 32
Apple , Inc. | 40:a6:d9:ee:__:__ | -28 dB | 1 | ’’
SAMSUNG ELECTRO| 20:64:32: c1:__:__ | -45 dB | 1 | ’’
Murata Manufact| 00:37:6d:ea:__:__ | -88 dB | 1 | ’’
Apple , Inc | 00:26: b0:7d:__:__ | -43 dB | 1 | ’’
RIM | a0:6c:ec:2a:__:__ | -67 dB | 3 | ’SSID_1 ’,’SSID_2 ’
Apple Inc | 70:56:81: bb:__:__ | -58 dB | 1 | ’’
Agere Systems | 00:02:2d:bf:__:__ | -49 dB | 1 | ’SSID_4 ’
Apple , Inc | f8:1e:df:d9:__:__ | -50 dB | 1 | ’SSID_5 ’
Murata Manufact| 00:37:6d:42:__:__ | -89 dB | 1 | ’’
Intel Corporate| 00:24: d7:59:__:__ | -57 dB | 1 | ’SSID_6 ’
LG Electronics | 10:68:3f:4e:__:__ | -58 dB | 1 | ’’
Apple , Inc. | 24:ab:81:8d:__:__ | -82 dB | 1 | ’’
Apple , Inc. | 58:55: ca:f3:__:__ | -91 dB | 1 | ’’
Intel Corporate| 00:21:6a:7f:__:__ | -76 dB | 1 | ’’
...

Fig. 1: Example of the information obtained from captured Wi-Fi probe requests.

It is important to note that, although using software belonging to a suite
designed for security auditing; passively collecting this information does not
require breaking any encryption or security mechanism. In fact this traffic is
transmitted in plaintext; in particular the MAC address is part of the 802.11
header that is never encrypted. In addition, a significant part of this traffic
(probe requests) specify a broadcast destination address (ff:ff:ff:ff:ff:ff)
and is therefore by definition sent to all device in range.

2.4 Problem statement

As we have just seen, wireless devices, can reveal a lot of information about their
owners. They can be used to track individuals’ whereabouts and movements as
well as other, potentially private, information. Emergence of wireless monitoring

2 The tail of the mac address and SSIDs have been replaced by ’ ’.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

30 / 139 GreHack

tools has made the collection of those signals an easy task. At the same time sys-
tems exploiting this information to track individuals for optimisation or profiling
purposes have emerged.

In those systems it is assumed that each device is associated with an indi-
vidual, and the unique identifier of the device (the MAC address) is used to
identify the corresponding individual. However, the real identity of the device’s
owner is never stored in the system as this information is not directly available.
In fact, the MAC address act as a pseudonym for the tracked individual. As
a consequence, one could think that the impact on privacy is limited since, as
private as the collected information can be, it is never matched with the real
identity of the individual.

We focus on the problem of finding the link between real identities and the
MAC address broadcasted by a wireless device. If available, this information
could be combined with the data stored by physical tracking systems to gain
knowledge on private information. Or it could simply be used to physically track
an individual, by monitoring the radio signal emitted by its device that is literally
acting as a portable beacon.

3 Preliminary investigation

As illustrated before, the MAC address of a device constitute an ideal personal
unique identifier. In this section we focus on the feasibility of collecting those
unique identifiers by studying the frequency at which they are emitted as well
as the maximum range at which they can be captured. Those characteristics
are of prime importance as they determine the maximum distance between the
attacker and the probability of success of our attacks.

3.1 Frequency of the unique identifier transmission

The emission frequency has been studied by monitoring a Wi-Fi channel and
computing the arrival time delta, i.e. the difference between the arrival times of
all the received probe request frames. The result for two device type (an Apple
and a Samsung smartphone3) is presented in on Figure 2. For both devices,
peaks can be observed at a regular interval. For the Apple device the peaks
can be observed around 0, 45, 90 and all other multiple of 45 seconds while for
the Samsung device, peaks are appears at 0, 30, 60 and all other multiple of
30 seconds. This indicates that those devices regularly broadcast probe request
frames and that the typical period is 45 seconds for the Apple device and 30 for
the Samsung device. Those results cannot be extended to all Wi-Fi devices, but
they give an idea on the period at which probe requests are emitted by a typical
Wi-Fi device.

3 The information about the device manufacturer has been obtained through the OUI
list that link MAC address prefixes to vendor names (http://standards.ieee.org/
develop/regauth/oui/oui.txt).

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

31 / 139 GreHack

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250

N
b

 o
c
c
u

re
n

c
e

Delta frame (seconds)

(a) Apple device

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250

N
b

 o
c
c
u

re
n

c
e

Delta frame (seconds)

(b) Samsung device

Fig. 2: Delta arrival time of probe requests frames

3.2 Transmission range

The range of a typical Wi-Fi transmission depends on the characteristics of the
emitter and the receiver. For a part of the attacks that will be presented in this
work a partial reception of the Wi-Fi frame is sufficient. We have measured in an
outdoor environment that the frames emitted by two common smartphones, the
Samsung Galaxy SII and the Apple iPhone 4S, can be received by the embedded
Wi-Fi interface4 of our DELL latitude E4310 at a distance of more than 100
meters for the Samsung device and more than 30 meters for the Apple device.
This ensures that frames emitted by a Wi-Fi device can be collected at a quite
long range.

4 Beacon replay attack

The idea of this attack is to identify a device through one or several personally
identifying wireless networks (PIWN) to which it has been connected. Indeed,
a set of PIWN can form a unique identifier than can be linked to an individual.
Examples of PIWN are personal home network, work network. By guessing the
networks to which a device has been connected, we hope to trigger a reaction
from the device that will reveal its link with the targeted individual.

We propose to identify the association between a device and a network by
leveraging the service discovery mechanism of the 802.11 protocol. More par-
ticularly by impersonating some Wi-Fi network, we can trigger a reaction from
the device that has been associated to this network [16]. Impersonating a Wi-Fi
network can be done by replaying its beacon frames. Indeed, when receiving a
beacon frame identifying a known network (network in the Configured Network
List of the device), the device will try to connect and, as a consequence, reveal
its MAC address.

4 Listed as Corporation Centrino Ultimate-N 6300 by our GNU/Linux operating
system.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

32 / 139 GreHack

Some Wi-Fi devices are publicly revealing their wireless network association
through a specific active service discovery mechanism. In this mode, devices
are sending probe requests containing the SSID of the wireless network in their
Configured Network List (see Section 2). For these devices, impersonation of a
wireless network by replaying beacons may not be required as passive monitoring
of the probe request frames could be enough to identify the association between
a device and a wireless network.

The efficiency of our method relies on the ability of getting enough infor-
mation through the PIWN. Gaining knowledge of enough PIWN to uniquely
identify an individual can be a challenging task. We propose to combine this
information with spatial information about the user. Let’s consider an individ-
ual I, H its home address, Let NH be the protected wireless network visible at
address H. Then by replaying the beacons corresponding to NH in a location
different from H such as A’s workplace, then only A’s device will respond to
those beacons. We note that it is preferable to focus on a protected wireless
network because they are usually associated to a much smaller group of users
than open networks.

As shown by Golle and Partridge in [9] the Home/Work location pair can be a
very strong pseudo-identifier, i.e. the probability that two persons working at a
given place also live at the same place is very small. This specificity can be used
to mount an efficient attack, assuming that the Home and Work location of the
target are known. Figure ?? present an illustration of the beacon replay attack
when using the home and work location of the target.

Fig. 3: Principle of the beacon replay attack using the home and work locations.

Implementation This attack requires collecting information about a number
of wireless networks in the first phase and in a second phase to impersonate

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

33 / 139 GreHack

those networks and analyse the potential reaction of Wi-Fi devices. To this aim
we have developed two tools that we have made available to the community 5:

– The Wi-Fi network fingerprinter

– The Wi-Fi AP replayer

Wi-Fi fingerprinter The Wi-Fi network fingerprinter collects information
about visible wireless networks and save it to a file for later use. The information
collected consists in the network SSID and a simplified version of the network’s
security features (open or secured). This tool monitors the Wi-Fi channel for a
fixed amount of time and, using tshark, selects only the beacon frames received
from the surrounding access points. For each detected AP, it extracts the SSID
and the security features and save the result to a file that will be later used by
the Wi-Fi AP replayer.

Assuming that a monitoring Wi-Fi interface mon0 have been created as follows:

$ sudo airmon -ng start wlan0

wlan0 Unknown iwlwifi - [phy0]

(monitor mode enabled on mon0)

The WiFi AP fingerprinter should be used at a location familiar to the target,
such as its home, using the following command:

$./ WiFi_AP_fingerprinter.sh APfingerprint.txt mon0

Capturing on mon0

result saved to APfingerprint.txt :

FBI_Surveillance -Van_02 ;0

allo;0

Freeboite_RoXoR ;1

Frit_WiFi ;0

HuitBox_1234 ;1

In this case 5 networks have been detected, three of them being open (security
= 0) and two being secured (security = 1).

5 Wi-Fi Stalking tools are available at http://mathieu.cunche.free.fr/?page_id=

438

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

34 / 139 GreHack

Wi-Fi AP replayer The second step of the attack is to impersonate the wire-
less networks that have been fingerprinted in the previous step. This is done using
the Wi-Fi AP replayer tool that takes as input a file containing the characteris-
tics of several Wi-Fi networks and replay them, before analysing the response of
surrounding Wi-Fi devices. In a first time the replay is performed using airbase-
ng, a tool from the aircrack-ng suite, whose purpose is to create Wi-Fi access
points in order to attack Wi-Fi clients. In our case we do not use the attack fea-
tures and are only motivated by triggering a reaction from surrounding Wi-Fi
clients. For each Wi-Fi network in the configuration file, a Wi-Fi AP is created
for a fixed amount of time and the traffic received by this AP is stored in a
capture file.

Then in a second time the each capture file is analysed to extract the MAC
address of the Wi-Fi clients that have attempted to connect to the corresponding
fake AP. This information is summarized for all the APs and displayed for the
user under the form of a list of client MAC address and corresponding SSIDs.
This list should contain the MAC address of the targeted device.

The WiFi AP replayer script should be run in range of the target using the
following command:

$./ WiFi_AP_replayer.rb test1.txt mon0

Creating fake AP : "eduroam" (privacy =1)

Creating fake AP : "FBI_Surveillance -Van_02" (privacy =0)

Creating fake AP : "allo" (privacy =0)

Analyzing results ...

Displaying results ...

c8:bc:c8:__:__:__ "Freeboite_RoXoR"

Here the results indicates that one device have reacted to the the network
”Freeboite RoXoR”. Therefore we can infer that this device belongs to the tar-
get.

Concerning the stealthiness aspect, the two phases of the attack must be
considered. Obtaining the wireless AP fingerprint of the home location, can be
done at any time of the day (it is fair to assume that the wireless AP are running
24/day) and only require to walk pass the house or the building where the person
is living. Alternatively, one can rely on online database of Wi-Fi access points
such as WiGle [2] to get the characteristics of Wi-Fi networks at a given location.

In the second phase, the rogue AP must be in range of the targeted devices,
which mean within a couple of meters. During the second phase of the attack,
one can reduce the distance between the target and the fake AP in order to
use the signal strength to narrow done the device. However this improvement in
term of accuracy can reduce the stealthiness of the attack.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

35 / 139 GreHack

5 Stalker attack

In order to identify the device associated to a given individual, the ideal solution
is to be isolated with this person. This means making sure that the distance
between the target and the monitorer is small compared to the distance between
the monitorer and other individuals. In a real world scenario, this configuration
can be hard to achieve and can raise suspicion of the target, compromising the
stealthiness requirement.

Another approach is to use a set intersection attack that consists in consider-
ing several distinct groups of individuals and by studying their intersection. The
intersection of the individual should match with the intersection of the collected
device identifiers. In the particular case where this intersection is reduced to one
element, the device identifier of the target can be directly deduced.

In practice clearly isolating and identifying a group of individual can be
troublesome. In the following we consider a continuous alternative to this discrete
method. Instead of considering fixed group of individual, we focus on a stream of
individual. In most social places, the group of individuals within the monitorer
covering area is a set of individual that is continuously changing. The idea is
to make sure that the targeted individual stays in the monitorer covering area,
while the rest of the set of the monitored individual is changing. The targeted
individual will be uniquely identifiable once the set of monitored people have
been totally renewed at the exception of target.

A simple way to maintain an individual in the monitored area, while the rest
of the set changes through time, is simply to stalk the target by following him.
Assuming that the target is walking in the street, the method consists in following
this person at a reasonable distance (close enough to stay in reception range and
not too close to avoid suspicion) with a monitoring device. The target will stay
in the monitored area while the bystander will only stay in the monitored area
for a short period of time.

5.1 Empirical evaluation of Wi-Fi contact length

In order to demonstrate the previous assertion and to estimate the time the
target should be monitored to be uniquely identifiable, we have performed a set
of experiments in the wild. During this experiment, a monitorer equipped with a
monitoring equipment have randomly moved across a large city during a period
of two hours. The first capture contains contacts with 1644 devices while the
second contain 460 devices.

Figures 4 presents the results for two capture traces as a cumulative distri-
bution of the contact length. Overall, a large fraction of the contacts are short:
for the capture 1, more than 80% of the contacts are below 500 seconds. In some
rare cases the contact is rather long (up to 3000 seconds ' 50 minutes). We can
observe a slight difference in the shape of the curves between. In particular, the
second capture exhibit a floor around 90% corresponding to a contact length of
around 1000 seconds. This can be explained by the fact that the second capture

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

36 / 139 GreHack

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

contact length (sec)

fr
ac

tio
n

of
 d

ev
ic

es

●
●●●●
●●●
●●●●
●●●●●
●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ● ● ● ●● ● ●● ●

(a) Trace 1

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

contact length (sec)

fr
ac

tio
n

of
 d

ev
ic

es

●
●●
●●●
●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●● ● ● ● ●

(b) Trace 2

Fig. 4: Cumulative distribution of contact length in two captures.

included a train travel of around 15 minutes, meaning that the persons travelling
in that train have stayed in range for at least 15 minutes.

The result of this experiments shows that during mobility within an urban
area, radio contacts are short in most cases, while in some rare cases they can
be as long as several tenth of minutes. In other words, a long and continuous
contact is maintained with only a very small set of individuals.

5.2 Attack implementation

This method is in two steps. First during the stalking part, the monitorer fol-
lows the target while monitoring the wireless channel using the Wi-Fi monitor,
and then the collected traces are analysed with Stalking analyser in order to
identify the target’s MAC address.

Overall the method works as follows:

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

37 / 139 GreHack

1. Visually identify target
2. Monitor wireless communications and log device identifier (in the case of

Wi-Fi the interface MAC address)
3. Follow the target in the street for N minutes, while keeping in transmission

range
4. Search the log for a MAC@ that have been seen all along the N minutes

Wi-Fi monitor The Wi-Fi monitor captures the wireless frames and extracts
their source MAC address. This tool uses the monitoring features of the aircrack-
ng suite and collects the source MAC address using the tshark command line
software.

The targeted individual should be followed, after having started the Wi-Fi mon-
itor using the following command:

$./ WiFi_monitor capture_file.txt mon0

Storing capture in capture_file.txt

Capturing on mon0

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

38 / 139 GreHack

Once the stalking done for a long enough period of time (see section 5.1) the
capture file can be analysed as follows:

$./ Analyze_capture capture_file.txt

Analyzing capture file: capture_file.txt

capture_file.txt

--

MAC addr : Contact Length (sec)

[20:64:32: __:__:__] : 1023.129089

[1c:4b:d6:__:__:__] : 13.435345

[f8:1e:df:__:__:__] : 0.12231

...

[24:ab:81:__:__:__] : 0.0

The output of the command is a list of devices that have been in range for the
longest period of time. Then we can conclude that the device that has stayed in
range for the longest period of time (in the ideal case during the whole capture)
belongs to the target. The devices that have the longest contact length are likely
to belong to the target.

6 Applications

Knowing the MAC address of an individual can be used to collect sensitive
information from systems storing MAC address along with other information.
This is of the course the case of Radio-Frequency tracking systems (see section
2.2) or Wi-Fi routers that stores in their log time stamped connection events
along with the MAC address of the device. The knowledge of the MAC address
can also be used to launch targeted attack over a Wi-Fi, for instance by exploiting
Wi-Fi drivers vulnerabilities [6]. In the following we present a number of scenario
in which the knowledge of an individual MAC address can be used to various
purposes including pranking, stalking or more dramatic ones.

Wi-Fi Booby Trap The knowledge of the MAC address of a given individual
can be used to trigger an action when this person enters a given area. As previ-
ously presented in this work, by monitoring the Wi-Fi channel and by examining
the source MAC address of the captured frames, it is possible to detect when
a device comes in range. Furthermore by considering the signal strength of the
received signals, it is possible to estimate the distance between the receiver and
the device or even to estimate its position by triangulation if several receivers
are deployed [5].

Using this information, one can think of multiple applications involving an
action triggered when a targeted individual enters a location. This can be for
example for pranking or for more harmful purpose like proximity weapons.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

39 / 139 GreHack

Tracking High-Profile individuals Wi-Fi tracking is the perfect tool for
following high-profiles individuals (HPI), and knowing the MAC address of such
person can be a great asset for paparazzi and journalists. We can envision the
deployment of Wi-Fi sensors, like in the snoopy system [8], inside an area of
interest, in order to acquire knowledge on the whereabouts of the targeted HPI.
For instance we can know in advance by which exit the HPI will go when living
a building.

Obtaining the mac address of a HPI can be a challenging task. One could
use repeated encountered along with a set-intersection approach to narrow down
the Wi-Fi identifier. HPI are often surrounded by a flock of people (manager,
assistants, bodyguards), and by using the previous approach, we may end with
multiple MAC address that may not belong to the HPI. However, this informa-
tion could still be useful since, as we just said, those people are following the
HPI and their position can have the same value as this of the HPI.

Who have you met today? GPS tracking either by planting a device on a ve-
hicle or by installing an application on a phone, is a common method for tracking
the movements of an individual. A similar approach could be considered with
Wi-Fi technology. Instead of logging the movement of a person, it will monitor
the interactions of a person with other identified individuals. Indeed planting a
Wi-Fi monitoring device on a vehicle is totally feasible, and we are starting to
see smartphones supporting Wi-Fi monitoring 6, i.e. the mode required to collect
frames transmitted by surrounding devices.

7 Related works

Information leakage in the 802.11 technologies has been reviewed in several
works. The nature of sensitive information leaked by 802.11 networks has been
presented in [10]. In [14], et. al. go a step further by showing how SSIDs can
be used to infer the locations where the device owner has travelled. In [7] the
authors demonstrate how leaked SSIDs can be used to infer social links between
the owners of Wi-Fi enabled devices.

The idea of replaying beacons in order to get a response from Wi-Fi devices
has been initially proposed in [4]. By impersonating an access point, the attacker
force the station to generates traffic that could be later used to recover the WEP
key of the corresponding network.

Wi-Fi based tracking of individuals has recently received attention from the
academic and the hacker community. Snoopy [8] and CreepyDOL [13] are two
Wi-Fi tracking systems based on cheap and commercially available devices like
the Raspberry-Pi.

Finally, Shue et. al. presented in [15] how wireless networks can be used to
accurately find the physical address behind an IP address. The idea is to send the
traffic to a host connected to the wireless network and to recognize the signature
of this traffic by monitoring the wireless communications.

6 Monitor mode for Broadcom WiFi Chipsets http://bcmon.blogspot.fr/

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

40 / 139 GreHack

8 Conclusion

Wireless device can reveal a lot of information about their owner (tracking, con-
nection history, etc.). However, the link between an individual and the device
unique identifier, the MAC address, is rarely available. In this work we have
presented two methods to find the MAC address belonging to a given individual
link. To this aim, we have designed a set of tools, based on Wi-Fi monitoring
techniques that we’ve made available for the community. The result of this work
shows that any individual equipped with a Wi-Fi enable device, such as a smart-
phone, can be easily tracked in its daily life and that by putting enough effort
it is possible to identify the association between a person and its device’s MAC
address. An interesting future work would be to consider the reverse problem:
given a device identified by its MAC address, find the owner of this device.

References

1. Aircrack-ng, a set of tools for auditing wireless networks. http://www.aircrack-
ng.org/.

2. WiGLE: Wireless Geographic Logging Engine. http://wigle.net/.
3. The wireshark network analyzer. http://www.wireshark.org/.
4. M. S. Ahmad and V. Ramachandran. Cafe latte with a free topping of cracked

wep retrieving wep keys from road warriors. In TOORCON9, 2007.
5. P. Bahl and V.N. Padmanabhan. RADAR: an in-building RF-based user location

and tracking system. In INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2,
pages 775–784 vol.2, 2000.

6. Laurent Butti and Julien Tinnès. Discovering and exploiting 802.11 wireless driver
vulnerabilities. Journal in Computer Virology, 4(1):25–37, 2008.

7. Mathieu Cunche, Mohamed-Ali Kaafar, and Roksana Boreli. Linking wireless de-
vices using information contained in Wi-Fi probe requests. Pervasive and Mobile
Computing, (0):–, 2013.

8. Daniel Cuthbert and Glenn Wilkinson. Snoopy: Distributed tracking and profiling
framework. In 44Con 2012, 2012.

9. Philippe Golle and Kurt Partridge. On the anonymity of home/work location
pairs. In Proceedings of the 7th International Conference on Pervasive Computing,
Pervasive ’09, pages 390–397, Berlin, Heidelberg, 2009. Springer-Verlag.

10. Ben Greenstein, Ramakrishna Gummadi, Jeffrey Pang, Mike Y. Chen, Tadayoshi
Kohno, Srinivasan Seshan, and David Wetherall. Can Ferris Bueller still have his
day off? protecting privacy in the wireless era. In Proceedings of the 11th USENIX
workshop on Hot topics in operating systems, pages 10:1–10:6, Berkeley, CA, USA,
2007. USENIX Association.

11. Nathaniel Husted and Steven Myers. Mobile location tracking in metro areas:
malnets and others. In Proceedings of the 17th ACM conference on Computer and
communications security, CCS ’10, pages 85–96, New York, NY, USA, 2010. ACM.

12. A. B. M. Musa and Jakob Eriksson. Tracking unmodified smartphones using Wi-
Fi monitors. In Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, SenSys ’12, pages 281–294, New York, NY, USA, 2012. ACM.

13. Brendan OConnor. CreepyDOL: Cheap, Distributed Stalking. In BlackHat, 2013.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

41 / 139 GreHack

14. Ian Rose and Matt Welsh. Mapping the urban wireless landscape with Argos. In
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’10, pages 323–336, New York, NY, USA, 2010. ACM.

15. Craig A. Shue, Nathanael Paul, and Curtis R. Taylor. From an IP address to a
street address: Using wireless signals to locate a target. In 7th USENIX Workshop
on Offensive Technologies (WOOT ’13), 2013.

16. Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pöpper, and Srdjan
Čapkun. Attacks on public wlan-based positioning systems. In Proceedings of the
7th international conference on Mobile systems, applications, and services, MobiSys
’09, pages 29–40, New York, NY, USA, 2009. ACM.

Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
GreHack 2013, Grenoble, France

42 / 139 GreHack

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

3.3 L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques

3.3.1 Ludovic Apvrille

Ludovic Apvrille obtained his M.Sc. in Computer Science, Network and Distributed Systems specialization
in 1998 from ENSEIRB and ISAE. He then completed a Ph.D. in 2002, in the Department of Applied Math-
ematics and Computer Science at ISAE, in collaboration with LAAS-CNRS and Alcatel Space Industries
(now, Thalès Alenia Space). After a postdoctoral term at Concordia University (Canada), he joined LabSoc
in 2003 as an assistant professor at Telecom ParisTech, in the Communication and Electronics department.
He obtained his HDR (Habilitation à Diriger les Recherches) in 2012. His research interests focus on tools
and methods for the modeling and verification of embedded systems and Systems-on-Chip. Verification
techniques target both safety and security properties. He’s the leader of the open-source UML/SysML toolkit
named TTool.

Associate professor at: Telecom ParisTech

3.3.2 Axelle Apvrille

Grehack-2013-speakers-axelle apvrille.png I am a senior Anti-Virus analyst and researcher for Fortinet. I
specialize in mobile malware: reverse engineering, detection, and related research & publications. Before
that, my field of expertise was implementation of cryptology algorithms, security protocols and OS.

• Specialties: virus, mobile phones, cryptography, security, Unix

• twitter: @cryptax

3.3.3 Pre-filtering Mobile Malware with Heuristic Techniques

With huge amounts of new Android applications released every day, in dozens of different marketplaces,
Android malware unfortunately have no difficulty to sneak in and silently spread, and put a high pressure on
antivirus teams. To try and spot them more easily, we built an infrastructure, named SherlockDroid, whose
goal is to filter out the mass of applications and only keep those which are the most likely to be malicious for
future inspection by Anti-virus teams. SherlockDroid is made of marketplace crawlers, code-level property
extractors and a data mining software which decides whether the sample looks malicious or not. This data
mining part is named Alligator, and is the main focus of the paper. Alligator classifies samples using cluster-
ing techniques. It first relies on a learning phase that determines the intermediate scores to apply to clustering
algorithms of Alligator. Second, an operational phase classifies new samples using previously selected algo-
rithms and scores. Alligator has been trained over an extensive set of both genuine Android applications and
known malware. Then, it was tested for proactiveness, over new and more recent applications. The results
are very encouraging and demonstrate the efficiency of this first heuristics engine for efficiently pre-filtering
Android malware.

• Talk and paper can be downloaded from http://grehack.org

43 / 139 GreHack

http://grehack.org

Pre-filtering Mobile Malware with Heuristic
Techniques

Ludovic Apvrille1 and Axelle Apvrille2

1 Institut Mines-Telecom, Telecom ParisTech, LTCI CNRS,
Campus SophiaTech, 450 route des Chappes, 06410 Biot, France

ludovic.apvrille@telecom-paristech.fr

2 Fortinet, Fortiguard Labs
120, rue Albert Caquot, 06410 Biot, France

aapvrille@fortinet.com

Abstract. With huge amounts of new Android applications released
every day, in dozens of different marketplaces, Android malware unfor-
tunately have no difficulty to sneak in and silently spread, and put a
high pressure on antivirus teams. To try and spot them more easily, we
built an infrastructure, named SherlockDroid, whose goal is to filter out
the mass of applications and only keep those which are the most likely
to be malicious for future inspection by anti-virus teams. SherlockDroid
is made of marketplace crawlers, code-level property extractors and a
data mining software which decides whether the sample looks malicious
or not. This data mining part is named Alligator, and is the main focus
of the paper. Alligator classifies samples using clustering techniques. It
first relies on a learning phase that determines the intermediate scores to
apply to clustering algorithms of Alligator. Second, an operational phase
classifies new samples using previously selected algorithms and scores.
Alligator has been trained over an extensive set of both genuine Android
applications and known malware. Then, it was tested for proactiveness,
over new and more recent applications. The results are very encouraging
and demonstrate the efficiency of this first heuristics engine for efficiently
pre-filtering Android malware.

Keywords: Malware, Mobile phone, Android, Heuristics, Cluster, Fil-
ter;

1 Introduction

Once scarce - perhaps even spooky - malicious Android applications have now
become a sad reality. There are over 200,000 malicious Android samples in June
2013, and approximately 1,000 new samples are reported every single day [2].
The difficulty lies in spotting them in the middle of the enormous bunch of
legitimate applications: 800,000 applications for Google Play alone [13]. The
experience just sounds like finding a needle in a haystack...

Currently, Android malware are only sporadically found in marketplaces
when researchers/engineers manually seek given applications, or by customer

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

44 / 139 GreHack

input and malware exchange sharing with other anti-virus vendors (see left part
of Figure 1). This means that most malware remain undetected in marketplaces
for a long time. A possibility to automate the process is first to scan all ap-
plications by an anti-virus engine so as to quickly detect known malware and
their variants. But then, there is still a huge volume of remaining samples (clean
or undetected malware) that are impossible to manually analyze by anti-virus
teams.
A way to break down that huge volume into a much smaller subset is to rely on
automated tools to pre-filter Android applications in marketplaces. In practice,
of course, the subset will probably also contain a few clean samples and a few
variants of known samples which were undetected by the AV scanner. Those
samples are finally inspected by AV analysts or researchers (see right part of
Figure 1) and threats can be raised if necessary (hot bulletins, advisories, con-
ference papers, . . .).
Since the subset is manually inspected, it is consequently very important to keep
its size down. A tight filter results in ignoring some malware. A loose filter re-
sults in having far too many samples to analyze, which actually also equals to
ignoring plenty of malware (those AV teams don’t have time to analyze). As the
very idea of filtering is about setting priorities on samples, we prefer the lesser
of two evils: tight filtering.

At EICAR 2012, an initial pre-filterering framework was presented [4], to
start tackling this issue. It consisted of a Google Play crawler and a heuristics
engine based on various properties found in the sample (presence of code send-
ing an SMS, use of rooting exploits etc). Each property was given an empirical
weight, and at the end an empirical threshold was set to filter in or out. Al-
though empirical decisions are suitable for early prototypes, they quickly reach
their limits on full scale systems. This paper enhances the framework with data
mining. Actually, our contribution is twofold.

1. First, the design and implementation of clustering techniques specifi-
cally adapted to populations of mobile malware. We rely on state of
the art clustering algorithms and adapt them to the filtering framework. No-
tably, we also design an original learning phase which automatically learns
the best configuration. Contrary to usual learning phases, ours combines pa-
rameters for several clustering algorithms, not a single one (sections 3 and
4).

2. Second, the evaluation of our overall approach over large sets of Android
applications.

The paper is organized as follows. First, we explain the overall architecture of
our pre-filtering system (section 2), christened SherlockDroid after its ability to
inspect clues. SherlockDroid can be seen as an improved and more mature version
of the heuristics engine published in [4]. Then, we explain how we designed and
integrated a free software clustering system for Android sample pre-filtering.
This clustering tool is named Alligator [5]. It has been specifically tuned for
SherlockDroid, though it could be re-used for other purposes. We quickly present
the clustering algorithms it supports (section 3), and then explain its learning

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

45 / 139 GreHack

- samples sent by
customers or firewall
quarantine
- malware exchange
with other AV vendors
- manual search in
marketplaces

Anti-virus
scanner

Manual inspection for advanced analysis
By AV analysts and researchers

CURRENTLY OUR CONTRIBUTION

Marketplaces

Anti-virus
scanner

Ok -
detected

Not detected

Manual inspection for advanced analysis
By AV analysts and researchers

Ignored
Samples
(hatched)

Samples we handle

Ok -
detected

Not detected

DroidLysis
+

Alligator

Fig. 1. Pre-filtering we need

phase (section 4), which has the specificity of combining multiple clustering
algorithms. Then, we present Alligator’s results over a wide-set of recent samples
(section 5). We explain the differences with other related work in Section 6 and
finally conclude the paper.

2 Architecture of SherlockDroid

Our pre-filtering engine, SherlockDroid, consists in three main elements. They
are depicted at Figure 2.

– Downloading (left part of the figure). Samples are downloaded from dif-
ferent Android marketplaces. In particular, we have implemented crawlers
for Google Play, ApkTop, SlideME and several less known repositories. Most
marketplaces require the development of their own dedicated crawler, with
sometimes tricky implementations (e.g. Google Play crawler as discussed in
[4]). In some cases, we manage to use generic recursive crawlers for some mar-
ketplaces. Once a sample is downloaded, it is scanned by an anti-virus engine,
to detect known malware. Undetected samples are stored in a database and
queued for analysis with DroidLysis.

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

46 / 139 GreHack

Downloaded
samples

DroidLysis
Property extractor

Value for
each

properties

Alligator Learning
(i)

Regular
cluster

Malware
cluster

Alligator Guessing
(ii)

Alligator
script

NO YES
Malware?

Static analysis of
applications

This paper

Crawling marketplaces

Android marketplaces

D
e

te
ct

ed

Anti-virus scanning

Fig. 2. SherlockDroid’s Architecture. This paper mostly focuses on Alligator (right
box): its design, its implementation, and its evaluation

– DroidLysis (middle part of the figure) is a stand-alone, quick, static anal-
ysis property extractor script. It has been presented in [4] but since then
we have enhanced it to extract over 140 properties of Android applications.
Finding malware is a cat and mice game, so the exact list of which proper-
ties are extracted and how cannot be publicly disclosed. Furthermore, other
researchers wanting to use this system might want to implement other prop-
erties customized to their own needs. However, for the purpose of illustration,
some properties have been described at [4] and since then, we have enhanced
DroidLysis with more properties such as whether the app uses sockets or not,
uses the keyguard functionality, busybox, JSON objects, bookmarks, cook-
ies, aborts broadcasts of SMS, lists packages, contacts etc. Each property
is either present or not present. A sample therefore corresponds to a set of
boolean values (one for each extracted property), and a cluster is a file con-
taining several sets of boolean values. This file is fed as input to the next
module, Alligator.

– Alligator [5] (right part of the figure) is meant to decide which samples are
the most likely to be malicious, based on clustering data mining approaches.
It implements two phases: (i) a learning phase and (ii) a guessing phase.
In the learning phase, Alligator automatically selects the best combination of
weights to apply to clustering algorithms, in order to better identify malware
and to reduce false positives. This combination is computed from applica-
tions already classified (regular, malware). Selected algorithms and weights
are described in a file, written in an ad hoc Alligator script language.
The guessing phase applies the script generated during the learning phase

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

47 / 139 GreHack

onto the list of samples to partition (called guess cluster). Alligator runs each
clustering algorithms indicated in the script, with the appropriate weights,
and outputs for each sample two scores: a score of resemblance to regular
samples, and a score of resemblance to malware samples. The higher the ma-
licious is, the more malicious the sample is. If the malicious score is higher
than the regular score, the sample is declared as suspicious. It ends up for
manual analysis (see Figure 1).

The rest of the paper is dedicated to Alligator, and the overall results of
SherlockDroid.

3 Clustering techniques of Alligator

Alligator is a lightweight, highly focused clustering tool, implemented in a few
thousands of Java code lines. It is piloted by easily understandable scripts. Its
comparison with other clustering tools is provided in section 6.

3.1 Classifying guess samples

Alligator takes as assumption that two main clusters R and M have been already
settled with ”known” elements. In our case, cluster R holds regular samples
(legitimate) and M holds malicious ones. The main purpose of Alligator is to
classify unclassified samples, i.e. samples currently part of a cluster named the
”guess” cluster G, into either R or M . Each element - also called samples - of
R, M and G have been given a value for each property p of a set of properties
P. The decision to put a sample g ∈ G in R or M thus depends on the value of
each p ∈ P for g, and also depends on the various values of samples of R and M
for the same set P of properties.
Finally, a clustering algorithm takes as input a sample g of G, two clusters R
and M and returns the score of g for each cluster R and M .

3.2 Clustering algorithms

We now quickly review the clustering algorithms implemented in Alligator for the
guessing phase. Some of them are quite well known (e.g., deviation, correlation),
therefore, our focus is rather to discuss the main reasons why we think they
could be interesting in the scope of malware identification (see also section 3.3).

– Standard deviation. Well known metric for computing the distance be-
tween a given sample g ∈ G and the average of cluster R and M for each
property. The smallest this distance is with a given cluster center, the better
is the chance to be part of that cluster.

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

48 / 139 GreHack

– Probability difference. The score is based on the percentage of ”typical”
values that are respected in R and M . ”Typical” is defined by a given prob-
ability difference diff: proba1 > diff + proba2. For example, let’s assume that
the probability of property #6: ”send SMS” to be equal to ”1” is 0.8 in clus-
ter M and equal to 0.2 in cluster R, and the probability difference diff = 0.5:
We say that ”1” is a typical value of cluster M for property ”send SMS” be-
cause 0.8 > 0.2 + 0.5. Thus, if the value of property 6 of g is = 1, then g
”respects” one typical value of of M .
Finally, the more typical values g respects for a cluster, the more chance g
has to be part of it.

– Probability factor. Same as ”Probabiblity difference” except typical values
are computed using a multiplicative difference: fact : proba1 > fact ∗ proba2.

– Proximity, aka k-Nearest Neighbours (k-NN). Based on the usual distance
relation, the algorithm takes as input the number of n of nearest neighbours
of g. Then, the score of g for R (resp. M) corresponds to the percentage
of elements of R (resp. M) that are in this set of closest neighbours. Thus,
contrary to the standard deviation that targets the distance with the cen-
ters of the two R and M clusters, the proximity cares only with the closest
elements of each clusters R and M .

– Proximity with limited properties. Same as ”Proximity”, but we only
consider the smallest distances. Thus, two samples which are very close -
if not equal - on most properties, but very far with only one property, are
classified as very distant with ”proximity”, but very close with ”proximity
with limited properties”.

– Correlation. Alligator first identifies correlations between different proper-
ties within a given cluster. For instance, Alligator could show that properties
”send SMS” and ”Internet access” are correlated for malware, but not for
regular. Then, Alligator computes for each g a score according to correla-
tions g matches within M and R.

– Epsilon clusters. In epsilon clusters, samples are grouped according to a
minimal distance ε. A sample s is added to a given epsilon cluster if and
only if there exists one sample in this cluster so that the distance between
that sample and s is less than ε (see Figure 3). Epsilon clusters are useful
to create sub-groups of R and M for each g of the guess cluster, and then
figure out the proportion of elements of R and M in that group. Thus, the
more elements of R (resp. M) in the sub-group of g, the more chance has g
to be an element of R (resp. M).

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

49 / 139 GreHack

Fig. 3. Notion of epsilon cluster. The epsilon cluster of this example contains three
elements. Another element is not in that cluster since its distance with any element of
the cluster is greater or equal to epsilon

3.3 Discussion on clustering algorithms

Clustering algorithms of Alligator provide different techniques for classifying
samples. Algorithms have been selected for their variety in distances: sometimes,
it is based on the center of clusters (e.g., deviation, probability), or on the
neighbourhood (e.g., proximity, epsilon cluster). Algorithms also differ in their
criteria for computing distances (probabilities, ε-path, etc.). But the selection
of which algorithms are really relevant for efficiently classifying a set of samples
is however not an easy task. By ”selection”, we mean which importance (or
weight) should we give to each clustering algorithm. A zero-weight means that
the algorithm is useless, a weight greater than zero means that the algorithm is
relevant. Two approaches can be used to determine weights:

– Review contributions on malware classification and results on clustering tech-
niques, and empirically define weights for each algorithm.

– Define an automatic weight computation for each algorithm. This is the
option we have taken: we have defined and implemented a learning phase in
Alligator. This phase is more thoroughly explained in next section.

4 The learning phase of Alligator

As we said previously, selecting clustering algorithms is not so easy in practice.
So, to overcome this difficulty, Alligator offers an easy-to-use learning phase
where a human-readable learning script helps selecting the best combination of
algorithms to use.

4.1 Learning phase: general approach

The learning phase works as follows.

1. Already classified samples are put either in cluster R or M . Other samples
are put in G.

2. A set S of algorithms - and their respective parameters - is selected. For
example, ”probability difference with diff = 0.8”, ”proximity of 25 samples
limited to 50 properties”, etc.

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

50 / 139 GreHack

3. The Alligator learning phase determines - using learning algorithms - the
best weight to give to each set of algorithm/parameters so as to maximize
the samples of R and M that are classified in their corresponding cluster
when applying algorithms/parameters of S. Said differently, the scoring for
a sample of R should be higher for cluster R than for cluster M , and the
opposite for samples of M .

Once the learning phase has determined all weights of algorithms, then, Alligator
can be used in its operational phase (i.e., the guessing mode) in order to classify
samples of G.

4.2 Goal of learning algorithms

In Alligator learning, a weight is cut into two parts:

– A user-defined float expression expr that takes as argument a float and re-
turns a new float. Usual operations (+, −, ∗, /) and parenthesis can be used
to define an expression expr.

– A multiplier m to be applied on the result given by the user-defined expres-
sion.

Thus, weight(x) = expr(x) ∗m.
Alligator’s learning phase intends to automatically determinem. Since one weight
is defined for each algorithm and for each cluster (regular, malware), the range
of possible m values is large. The learning script can be used to restrict all pos-
sible intervals of m for each clustering algorithm, and for each cluster R and M .
For example, the following subscript configures the possible values of m for the
score on standard deviation: expr = x2 is provided for each cluster, and a range
for m = [0 . . . 1000] is provided also for each cluster R and M , with a step of
5. This range means that all values in interval 0..1000 with a step of 5 shall be
considered by Alligator in learning mode for that specific algorithm

setComplexWeight r e g u l a r 0−1000 ,5 x∗x
setComplexWeight malware 0−1000 ,5 x∗x
compute dev i a t i on

The goal of learning algorithms is to determine the best sets of m for each
algorithm, for each cluster. ”Best” means that we try to optimize the percentage
of elements of R and M that are correctly classified with the set of multipliers
m. For example, in the case of the previous script, Alligator determined that
m = 10 for regular, and m = 350 for malware. In that case, the learning phase
would generate the following script, to be used in guessing mode:

setComplexWeight r e g u l a r 10 x∗x
setComplexWeight malware 350 x∗x
compute dev i a t i on

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

51 / 139 GreHack

4.3 Learning algorithms

We now explain the basics of learning algorithms meant to determine the mul-
tipliers m.

– Random tests random multipliers within their possible ranges, and for a
given time.

– BruteForce parses all multipliers combinations. This algorithm is to be
used when the set of all combinations is of reasonable size. We have im-
plemented this algorithm in two different ways. In the first one, a tree of
all combinations is first built: each leaf represents one possible combination.
Then, each leaf is considered one after the other. The second implementation
considers various combinations while the tree is being built and destroyed
(”on-the-fly” approach).

– OneOtherAverage. Of all multipliers which have a range specified, the
algorithm starts working on the first one, and sets all other ranges to their
average value. When the algorithm has found the best value for the first
variation, it memorizes the value. Then, it works on the second range. The
first range is set to the best value, all others are set to average. And so on.
This algorithm has the drawback of not taking into account the correlation
between multipliers, that is, for a given algorithm, only the multiplier of R
or M is explored at a time.

– TwoOtherAverage. Same as oneOtherAverage except the algorithm works
simultaneously on two multiplier ranges at a time. The others are set to the
average value, or to the best value that was previously identified. Since the
combinations are much larger than in oneOtherAverage, this algorithm takes
much longer to complete. But it can explore at the same time the best mul-
tipliers for R and M for a given clustering algorithm.

– Combination of learning algorithms. random and oneOtherAverage (or
twoOtherAverage) can easily be combined. For example random is first used
for a given duration to define a first set of best values for each multiplier.
Then, oneOtherAverage is run using as starting values these best values,
instead of using average values. Other combinations are obviously possible.
In particular, OneOtherAverage can be iterated several times until identified
multipliers do not improve anymore the classification results.

4.4 Minimizing false positive and/or negative

In our case, we are particularly concerned that Alligator does not flag clean
files as suspicious, as then, anti-virus analysts would manually lose their time
inspecting them. Flagging a malicious file as clean is obviously not desirable, but
not as critical. As said in the introduction, the main idea of our contribution

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

52 / 139 GreHack

is indeed to create a small subsets of applications to be manually analyzed. In
other words, false positives are more important to us than false negatives. For
Alligator, this corresponds to assigning a higher weight to correct identification
withinR thanM . Thus, weights selected by learning algorithms can be computed
by also giving more importance to the right identification of clean samples or
malware. Two parameters can be used for that purpose:

– A relative factor f of correct identification between regular and
malware.
For example, suppose we obtained correct identification percentages of 99%
for R and 94% for M , and in another learning, 98% and 97%. If the factor
f = 1, regular and malware identification has the same importance, and
so, the second learning is selected because the average correct identification
is 97.5%. On the contrary, if f = 10, the first learning is selected since its
average identification is 10∗99+94

11 = 98.54 whereas the average identification
of the second learning is only equal to 97.64.

– A minimum correct identification rate: one rate for regular, one rate
for malware. Between two sets of weights, with one respecting the mini-
mum correct identification rates, and another one not respecting them but
respecting the relative factor, the first one is prior.

4.5 Discussion

The learning phase is of utmost importance for correctly setting the weight of
each clustering algorithm and of each cluster R and M . The execution of this
phase takes a reasonable time when ranges and steps are well chosen. Large
ranges may first be selected with large steps, and then, manual selection of
smaller ranges and steps around the found values is a way to more quickly
converge to good weight values. Other optimization techniques (e.g., Pareto ap-
proaches) could be used to select weights. However, current approach is quite
simple and offers good results, both in term of learning time and of percentage
of correct classification. The next section focuses more particularly on learning
results.

5 Results

The efficiency of SherlockDroid - including Alligator learning and guessing phases
- is evaluated below with recent Android applications. Efficiency is evaluated in
terms of quickness to produce results, and in terms of relevance of the results.
Both points are discussed hereafter.

5.1 Composition of test clusters

Alligator has been trained over real-life clusters of 83,119 malicious Android
samples and 8,505 clean ones (see Table 1). Those samples were downloaded

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

53 / 139 GreHack

before June 14, 2013. The guess clusters, with samples different from the learn-
ing phase, have 19,185 malicious samples and 1,104 regular ones. They were
downloaded end of June 2013.

Type of cluster Malware samples Regular samples

Learning clusters 82,985 8,299
Guess clusters 19,171 1,103

Total of samples tested 102,156 9,402
Table 1. Number of samples in our test clusters

Gathering clean samples is a difficult problem, because it is difficult to be
absolutely sure a sample is not malicious. We cannot trust an application to be
genuine because it appears on Google Play (as a matter of fact, several malware
are encountered on that marketplace, and others). We need to inspect code
manually, and check there is no malicious functionality, which unfortunately is
a lengthy process. As a compromise, we also populated the set with open source
applications (e.g. Mozilla, Savannah Gnu, F-Droid), as their source code can be
inspected by the community, thus with reduced risks of being malicious. We also
added signed packaged included in the Android operating system (e.g Gmail.apk,
GoogleServicesFramework.apk etc.) and standard applications that ship with the
ROM of mobile phones3. So, although it would be preferable to have clusters of
approximately the same size, this was not feasible in practice. This is however a
point we will focus on in our future work.

5.2 Results of the learning phase

We tested Alligator’s learning over our different learning algorithms (brute-
force, oneOtherAverage, twoOtherAverage, random and combinations / itera-
tions) with several parameters for each classification algorithms, e.g.:

– Proximity: closest 50, 10, 2 and 1 neighbour(s).
– Correlations: 0.80, 0.75, 0.70, 0.60
– Probability difference: 0.5, 0.2, 0.1
– Probability factor: 10, 5, 2, 1.5, 1.2
– Epsilon clusters: ε-path of 10−5 to 10−1

Then, the learning phase outputs a score to use for each (algorithm, param-
eter) and for each type (clean, malware). For example, the score to apply to
(correlation, 0.80) is 414 for clean and 918 for malware.
In terms of computation time, with the “randomonemultipass 600 20” option
(i.e., random for 600 seconds, and then 20 pass ”oneOtherAverage”), the learning
phase took around 14 hours on an average non dedicated host.

3 Note there has however been isolated cases of infected firmware apps - recall Carri-
erIQ [11]

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

54 / 139 GreHack

5.3 Results of the guessing phase

In a second step, we gathered other samples, different from the ones we had used
for training, to be fair for results. The new malicious samples are more recent,
collected between June 15th and June 24th 2013. We removed any malicious
sample which was detected by a generic signature existing before June 15, 2013.
So, the set of new malicious samples contains ”new unknown” malware at the
time of Alligator’s learning. Using the best scripts generated by Alligator during
the learning phase, we tested Alligator over those new sets of malware
and clean files.

The results of Alligator guesses are displayed at Table 3.

Regular Malware

Learning
Number of failed/recognized 9 / 8,290 67 / 82,918

Failure/success rates in % 0.11% 99.89% 0.08% 99.92%

Guessing
Number of failed/recognized 2 / 1,101 375 / 18,796

Failure/success rates in % 0.18% 99.81% 1.96% 98.04%
Table 3. Failure rates for Alligator’s learning and guessing phases. For instance, we
have a very low rate of FP - which is our main target -, and a 98.04% pro-activity.

On one hand, the failure rate for clean samples is really excellent: this was our
main target to reduce that rate since FP may induce extra work to AV analysts.
On the other hand, the failure rate for malware samples is also very low, which
demonstrates an interesting capability in terms of pro-activity. Alligator was
able to flag 98.04% of malware, malware which were unknown (and undetected)
to an anti-virus scanner.

5.4 Discussion

We believe the results of Alligator are really excellent, and list below our argu-
ments.

– Our premier goal of reducing the sheer amount of samples to in-
spect is taking shape. Using the current configuration, our pre-filtering
framework saves analysts from many unnecessary analysis. If 10,000 clean
samples and 1,000 undetected malware go through our pre-filtering system,
only 10, 000 ∗ 0.18% + 1, 000 ∗ 98.04% = 1, 002 out of 11,000 remain to be
analyzed manually in the end, with only 20 malware remaining undetected
(and so, 980 malware are detected).

– Alligator shows a high proactivity rate 98.04%. Pro-activity is the
capability of identifying new families of malware. Recall section 1: this is

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

55 / 139 GreHack

a second goal to our pre-filtering system, as it helps researchers look into
new trends in cyber-criminal worlds. As an element of comparison, VB100
tests show pro-activity rates between 70% and 90% for anti-virus products
[16]. Although our pre-filtering system is not an anti-virus engine, the figures
indicate Alligator is performing well in this area, even on large clusters.

– False positives are unacceptable for anti-virus scanners (complaints,
bad press...). However, they are an unavoidable burden for any system re-
lying on heuristics (such as DroidLysis). We have already said this previously
but it is important to repeat Alligator is not an anti-virus scanner: it acts
after samples have been scanned. Of course, future work will however be
made to minimize as much as possible failure rates for clean samples, even
if we already consider our 0.18% rate as very low.

6 Related Work

Data mining’s goal is to organize large and complex sets of data. In the anti-
virus industry, it has often been used to classify PC samples [17] [18] [8], or to
combine weak heuristics into stronger rules [12]. However, its use over mobile
samples is far more recent, perhaps because the growth of mobile malware is
quite new altogether. We are aware of 4 prototypes which use data mining in
the mobile world: MADAM [10], [15], AAS [6] and Crowdroid [7].

MADAM, unlike SherlockDroid, is a behaviour-based detection engine run-
ning directly on an Android phone. It relies on the k-NearestNeighbour algorithm
for data mining, similar to the proximity of Alligator. MADAM seems promis-
ing for a run time detection, but it obviously requires to manually install the
application and use it, which prevents from automating the process.

[6] is an Android Application Sandbox to be deployed inside the marketplace
itself and to pre-scan applications. Their paper explains how to collect informa-
tion, notably how to hijack and log system calls, but does not discuss how the
final decision - suspicious or not - is to be made. Moreover, AAS has only been
tested against 150 clean applications and a single self-written fork bomb.

Crowdroid [7] is an interesting effort to dynamically monitor Android ap-
plications. A client application is deployed on the smartphones and sends pre-
processed system calls data to a remote server for data mining. Their approach
is significantly different from ours on several aspects. First, they send data for
analysis over the Internet which opens concerns for privacy even if data is ”non-
personal”. The use of Internet may also cost to the end-user, depending on his
mobile subscription. Second, their system relies on dynamic analysis, whereas
we have chosen to rely on static analysis only. Without entering the debate, we
have chosen the static approach for scalability and efficiency reasons: scalability
as we need our system to process thousands of applications. Efficiency because
malware commonly expose a different behaviour when run inside emulators or
sandboxes [1]. With regards to scalability, it should be noted that Crowdroid
has only yet been tested on artificial malware (i.e tailored for the tests) and on
a handful of real malware.

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

56 / 139 GreHack

Also related to our research, we could cite pBMDS [19] and Andromaly [14]
which are behaviour-based detection engines, like MADAM. But they do not use
data mining.

One of the closest work to ours is DroidRanger [20]. Like SherlockDroid,
DroidRanger is one of the few systems which scale and has been tested on a sig-
nificant amount of real life applications (recall for instance that AAS has been
tested over 150 clean samples and 1 artificial malware, Crowdroid over 2 real
malware and a few artificial ones etc). DroidRanger consists in filtering appli-
cations statically against pre-computed footprints of known malware. Then, in
a second stage, it looks for signs of attempting to dynamically load untrusted
code, using two different heuristics. So, basically, the tasks of DroidRanger cor-
responds to the DroidLysis block in our architecture, except that DroidRanger
is limited to either detecting variants of known malware families or unknown
malware that dynamically load untrusted code, via the implementation of two
heuristics. To be fair, DroidRanger is quite successful at spotting malware in
that particular subset, however, by design, it is blind to other kind of malware:
malware that do not load untrusted code and are not from a known malware
family cannot be spotted. Because of those limitations, DroidRanger does not
need data mining. In the future, if they extend their system to consider a wider
set of possibilities (Alligator processes results from 146 different heuristics) they
will necessarily face issues as those addressed by Alligator in this paper.

Finally, from a data mining point of view, several generic data-mining ap-
proaches and tools already exist, e.g. [9]. They support many clustering tech-
niques, but unfortunately suffer from several drawbacks with regards to the way
we need to use them. First, they mostly target the identification of clusters: in
our case, we want to classify samples into two known base clusters (R and M).
Second, the classification usually relies on one given distance metric (e.g., Euclid-
ian, Pearson correlation, etc.) where Alligator relies on several algorithms whose
importance for correct identification is automatically computed in a learning
phase. Thus, Alligator provides strong automated help to select clustering algo-
rithms. Third, like e.g. [9], Alligator can be piloted by readable, simple scripts
and text-based databases, and runnable on any kind of desktop host. Last but
not least, Alligator has been implemented with an integrated understanding and
minimization of false positives and false negatives. In the anti-virus industry,
this is particularly important, as as explained in section 4.4, Alligator has an
explicit criteria to favor lower false positives compared to false negatives.

7 Conclusion

With hundreds of new Android applications every day on marketplaces, mobile
malware have the opportunity to be silently released, cause havoc and only
be noticed several days (or months) later. This puts much pressure on anti-
virus teams to rush and classify samples as quickly as possible. To do so, the
paper proposes a pre-filtering system which automates analysis of applications
published in Android markets. SherlockDroid efficiently combines an Android

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

57 / 139 GreHack

application crawler, an Android application property extractor (DroidLysis) and
a data-mining toolkit (Alligator), the latter being an important contribution of
the paper.

Tests have been conducted over large sets of Android applications. Our pre-
filtering system significantly reduces the work load for analysts: 99.8% of clean
applications are filtered out. Alligator also seems very promising for the detection
of new unknown malware, with a pro-activity rate measured at more than 98%.
This gives researchers far better chances of identifying new families of Android
malware, and thus warning the community. Alligator already identified unknown
malware, e.g. a GPS-leaking adkit [3].

We will however improve our research on several angles. First, technically, we
intend to explore new clustering and learning scripts, for instance, automatically
refining searches or tightening the filter. We also intend to introduce weights on
properties so that algorithms such as deviation do not consider each property
with equal importance. Second, on a wide scale point of view, we need to find
ways to collect more clean malware for training, so that the regular cluster has
a comparable size to the malware cluster. Besides theory, we have also already
started to test the entire SherlockDroid architecture over several dozens of mar-
ketplaces and intend to see in practice how many suspicious samples get flagged
and how many new malicious families are discovered that way.

References

1. Axelle Apvrille. An OpenBTS GSM replication jail for mobile malware. In 21st
Virus Bulletin International Conference, pages 108–116, Barcelona, Spain, October
2011.

2. Axelle Apvrille. 1,000 malicious Android samples per day, May 2013.
http://blog.fortinet.com/1-000-malicious-Android-samples-per-day.

3. Axelle Apvrille. Alligator detects GPS-leaking adware, August 2013.
http://blog.fortinet.com/Alligator-detects-GPS-leaking-adware/.

4. Axelle Apvrille and Tim Strazzere. Reducing the Window of Opportunity for
Android Malware. Gotta catch’em all. In Journal in Computer Virology, volume 8,
pages 61–71, 2012.

5. Ludovic Apvrille. Alligator: AnaLyzing maLware wIth partition-
inG and probAbiliTy-based algORithms, 2013. http://perso.telecom-
paristech.fr/∼apvrille/alligator.html.

6. Thomas Bläsing, Aubrey-Derrick Schmidt, Leonid Batyuk, Seyit A. Camtepe, and
Sahin Albayrak. An Android Application Sandbox System for Suspicious Software
Detection. In 5th International Conference on Malicious and Unwanted Software
(MALWARE’2010), Nancy, France, France, 2010.

7. Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for android. In Proceedings of the 1st ACM work-
shop on Security and privacy in smartphones and mobile devices, SPSM ’11, pages
15–26, New York, NY, USA, 2011. ACM.

8. Jianyong Dai, Ratan Guha, and Joohan Lee. Feature set selection in data mining
techniques for unknown virus detection: a comparison study. In Proceedings of the
5th Annual Workshop on Cyber Security and Information Intelligence Research:

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

58 / 139 GreHack

Cyber Security and Information Intelligence Challenges and Strategies, CSIIRW
’09, pages 56:1–56:4, New York, NY, USA, 2009. ACM.

9. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano. Open Source Clustering Software.
Feb 2004.

10. Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra. Madam:
A multi-level anomaly detector for android malware. In Computer Network Security
- 6th International Conference on Mathematical Methods, Models and Architectures
for Computer Network Security, MMM-ACNS, volume 7531 of Lecture Notes in
Computer Science, pages 240–253, St. Petersburg, Russia, October 2012. Springer.

11. Trevor Eckhart. What is Carrier IQ?, 2011.
http://androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/.

12. Igor Muttik. Malware mining. In 21st Virus Bulletin International Conference,
pages 46–51, Barcelona, Spain, October 2011.

13. Google Play Store: 800,000 apps and overtake Apple AppStore!, Febru-
ary 2013. http://www.rssphone.com/google-play-store-800000-apps-and-overtake-
apple-appstore.

14. Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. ”an-
dromaly”: a behavioral malware detection framework for android devices. J. Intell.
Inf. Syst., 38(1):161–190, February 2012.

15. Peter Teufl, Stefan Kraxberger, Clemens Orthacker, Günther Lackner, Michael
Gissing, Alexander Marsalek, Johannes Leibetseder, and Oliver Prevenhueber. An-
droid Market Analysis with Activation Patterns. In Proceedings of the International
ICST Conference on Security and Privacy in Mobile Information and Communi-
cation (MobiSec), 2011.

16. Virus Bulletin, Fighting malware and spam, VB100 Comparative review on Win-
dows Server 2003 R2, October 2012.

17. Jau-Hwang WANG, Peter S. DENG, Yi-Shen FAN, Li-Jing JAW, and Yu-Ching
LIU. Virus detection using data mining techniques. In IEEE International Con-
ference on Data Mining, 2003.

18. Tzu-Yen Wang, Chin-Hsiung Wu, and Chu-Cheng Hsieh. A virus prevention model
based on static analysis and data mining methods. In Proceedings of the 2008 IEEE
8th International Conference on Computer and Information Technology Work-
shops, CITWORKSHOPS ’08, pages 288–293, Washington, DC, USA, 2008. IEEE
Computer Society.

19. Liang Xie, Xinwen Zhang, Jean-Pierre Seifert, and Sencun Zhu. pbmds: a behavior-
based malware detection system for cellphone devices. In Proceedings of the third
ACM conference on Wireless network security, WiSec ’10, pages 37–48, New York,
NY, USA, 2010. ACM.

20. Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. In Proceedings
of the 19th Network and Distributed System Security Symposium (NDSS 2012), San
Diego, CA, USA, Feb 2012.

L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
GreHack 2013, Grenoble, France

59 / 139 GreHack

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

3.4 Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free
on Binary Code

3.4.1 Marie-Laure Potet

Marie-Laure Potet is professor at Ensimag/Grenoble INP and researcher at Verimag laboratory. Her research
interests focus on formal validation techniques, static code analysis and safety/security property modeling
and verification.

3.4.2 Laurent Mounier

Laurent Mounier is Maitre de Conferences at Université Joseph Fourier and Verimag laboratory since 1993.
His research interests focus on formal validation techniques including model-checking, test and runtime
validation, and static analysis.

3.4.3 Josselin Feist

PhD student at Verimag, Grenoble.

3.4.4 Statically Detecting Use After Free on Binary Code

We present GUEB a static tool detecting Use after Free vulnerabilities on disassembled code. This tool has
been tested on a real vulnerability in ProFTPD (CVE-2011-4130).

• Talk and paper can be downloaded from http://grehack.org

60 / 139 GreHack

http://grehack.org

Statically Detecting Use After Free on Binary
Code?

Josselin Feist and Laurent Mounier and Marie-Laure Potet

Vérimag, centre équation, 2 avenue de Vignate – 38610 Gières, France,
Josselin.Feist@imag.fr, Laurent.Mounier@imag.fr, Marie-Laure.Potet@imag.fr

Abstract. We present GUEB a static tool detecting Use after Free
vulnerabilities on disassembled code. This tool has been evaluated on a
real vulnerability in ProFTPD (CVE-2011-4130).

1 Introduction

Vulnerability detection classically starts with a first step of fuzzing, exer-
cising applications with potentially dangerous inputs. Traces, produced
by fuzzing , are generally classified using some heuristics (for instance
traces producing a memory crash). Then, the exploitability of these
traces, or similar ones, is manually studied. In order to obtain inter-
esting traces, fuzzers require to identify which parts of an application
must be stressed and how (i.e., SQL injection, buffer overflow, etc.). To
do that an approach consists in statically identifying vulnerable patterns
(from syntactic ones, such as strcpy calls, to more sophisticated ones,
like in [13]).
We propose here a static approach dedicated to the detection of Use after
Free (UaF) patterns in binary code, a vulnerability doubling every year
since 2008 [7]. UaF are characterized by the occurrence of two distinct
event: the creation of a dangling pointer, later followed by an access to
the memory pointed to by this pointer[1]. Hence, detecting UaF requires
to analyze long execution sequences, which is a challenging task when
dealing with large applications. As a result, we believe that a static anal-
ysis can provide good results from a scalability point of view, finding UaF
patterns that would be hard to detect using pure dynamic approaches.
More precisely, our objective is to identify sets of program locations in-
volved in a UaF, providing a first level vulnerability detection step, and
applicable on large (binary) codes. Moreover, information collected dur-
ing this step could also be useful for a subsequent exploitability analysis
(i.e., telling if and how some freed memory chunk can be later reallocated
or overwritten).

1.1 A motivating example

We explain our approach through a motivating example, given on List-
ing 1.11. The main idea is that the function index user puts p, the

? This work was partially funded by the Binsec project (ANR-12-INSE-0002-01).
1 In C for a better understanding, but our analysis operates at the assembly level.

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

61 / 139 GreHack

function argument, in the global variable p global (line 8) and restores
the previous value of p global (just before the end of the function, line
13). But, when the condition cmp fails at line 9, index user does not
restore the value of p global. This kind of mistake (i.e., forget to re-
store a previous pointer value), can be found in real programs (this UaF
is borrowed from CVE-2011-4130). So, if during the call at line 29 this
behaviour happens, p global will point on the same memory area than
p index and therefore, after the free at line 30, p global will become a
dangling pointer. Then, at line 33, malloc could return the same memory
area2 as pointed to by p index. In this case, the comparison at line 38
will always be true.

Listing 1.1. Motivating example

1 int *p_global;
2
3 int cmp() { return *p_global >=MIN && *p_global <=MAX; }
4
5 void index_user(int *p) {
6 int *p_global_save;
7 p_global_save=p_global;
8 p_global=p;
9 if(cmp() <=0) {

10 printf("The secret is greater than 50\n");
11 return ; }
12 printf("The secret is less than 50 \n");
13 p_global=p_global_save; return ;
14 }
15
16 int main(int argc , char * argv []) {
17 int *p_index ,* p_pass;
18 if(argc !=2) {
19 printf("./uaf MODE\nMODE EASY =1\ nMODE HARD !=1\n")

;
20 return 0; }
21
22 p_global =(int*) malloc(sizeof(int));
23 *p_global=SECRET_PASS;
24
25 if(atoi(argv [1])== MODE_EASY) {
26 p_index =(int*) malloc(sizeof(int));
27 printf("Give a number between 0 and 100\n");
28 scanf("%d",p_index);
29 index_user(p_index);
30 free(p_index); }
31 else { printf("Good luck ! \n"); }
32
33 p_pass =(int*) malloc(sizeof(int));
34
35 printf("Give the secret\n");
36 scanf("%d",p_pass);
37
38 if(* p_pass ==* p_global) {
39 printf("Congrats ! \n"); }
40 else { printf("Sorry ...\n"); }
41 return 0; }

2 This is the case for instance with the libc

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

62 / 139 GreHack

1.2 Our approach

Despite its complexity, static analysis offers several advantages: it sup-
plies more complete results and generally allows to take into account
more paths than dynamic analysis. For instance, for UaF, dangerous
paths have to follow up several events: first, allocate a heap address,
second, free this address, and, finally, access to the memory pointed to
by this address. Using a dynamic search, we have few chances to find a
path following all these requirements. Furthermore, a static analysis is
independent of some execution specificities, such as effective addresses.
For instance, in the case of UaF we can detect dangerous behaviours
independently of the invoked allocator.

Our contribution, called GUEB for Graph of Use-After-Free to Exploit
Binary, is based on three steps. First we track heap operations and
address transfers, taking into account aliases, using a dedicated value
analysis (see section 2.2). Secondly we exploit these results to statically
identify UaF vulnerabilities. Finally we extract subgraphs, for each UaF,
describing sequentially where the dangling pointer is created, freed and
used (see section 3.2). Fig. 1 gives the subgraph extracted from Listing
1.1 (presented at the source level). It identifies bloc 26 (creation of a
pointer p), bloc 30 (freeing of this pointer) and bloc 38 (dereferencing of
p).

1.3 Some related work

There exists several tools statically tracking UaF in source-level C code
(such as Polyspace3 or Frama-C [9] for instance). These tools are mainly
dedicated to safety verification: programs that do not respect some con-
straints are rejected, such as undefined behaviors in C. In vulnerabil-
ity analysis we are precisely interested by unpredictable behaviors, that
could be successfully exploited. For instance in the case of UaF we are
not just interested by the use of a dangling pointer, we want to localise
where they are created and how they can be effectively exploited. Getting
such detailed information on the memory layout requires to analyze the
code at the binary level, taking into account the compiler optimizations
and the libraries in use.

However, lifting static analysis to binary codes is quite challenging [3].
On the academic side, there exists several open platforms providing some
multi-purpose static analysis (program slicing, CFG construction, data-
flow analysis, etc.), and well-defined APIs to access intermediate code
representations. One can mention for instance REIL [10], BAP [6], or
Bincoa [5]. But none of them provide any on-the-shelf solution for UaF
detection.

As a result, when binary code is concerned, to the best of our knowledge,
existing UaF detection tools are mainly based on dynamic approaches.
For example, AddressSanitizer[14] uses a specific heap allocator allow-
ing good detection of UaF but does not give information of the root of

3 http://www.mathworks.fr/products/polyspace

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

63 / 139 GreHack

Fig. 1. Extracted Subgraph for example Listing 1.1

vulnerability. Undangle [7] is a tool specifically dedicated to UaF anal-
ysis: starting from a given execution trace, this tool aims to identify
program points where dangling pointers are created, to detect the root
of a possible vulnerability. In this sense, it pursues the same objectives as
ours. Nevertheless, this approach requires to first identify paths leading
to UaF vulnerabilities, to instrument each assembly instruction, which
slows down the execution.

The paper is organized as follows: section 2 describes the memory model
and the value analysis used, section 3 presents the method we propose
to detect UaF patterns, and section 4 summarizes some experimental
results and gives some limitations of the current prototype and directions
for future work.

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

64 / 139 GreHack

2 Memory model and value analysis

In this section we detail each of the three steps of the GUEB approach.
First, we explain how the stack and heap elements are represented.

2.1 Abstract memory representation

We assume that addresses in the stack are expressed as offsets with
respect to the base register EBP . Since inter-procedural analysis is
achieved by procedure inlining4, each stack element is represented by
a pair (EBP0, offset) where EBP0 is the initial value of EBP . For in-
stance p index is denoted by (EBP0,−24) and p global save by
(EBP0,−36). Global variables have constant addresses represented by
an identifier, here the variable name (e.g., p global).
Regarding the heap, we define HE as the set of all possible heap elements.
An element of HE is a pair (base, size), where base is an allocation iden-
tifier, size the allocation size. Such a pair is also denoted as a chunk.
PC is the set of all program points. We define HA and HF , two func-
tions that respectively associate the set of all currently allocated or freed
elements at each point pc (HA ∈ PC → P(HE), HF ∈ PC → P(HE),
P(S) being the power set of S). We use the classical hypothesis (in static
pointer verification), telling that each allocation supplies a fresh memory
block (although this approach is not realistic to study the exploitability,
it is sufficient to detect the vulnerability).

2.2 Value Set Analysis (VSA)

The goal of the value analysis step is to statically discover which program
point allocates or frees which heap element. Then, address transfers must
be tracked, as well as allocation sizes. Thus, in addition to the two func-
tions HA and HF , our value analysis produces, for each pc, an abstract
environment AbsEnv. AbsEnv associates to each memory address a pos-
sible set of values this address contains, corresponding either to chunks
or allocation sizes.
Table 1 shows some results obtained when analyzing Listing 1.1. During
the two first allocations, lines 22 and 26, two new chunks are created.
During the call of index user the value of p index is stored, modified
and restored (lines 7, 8 and 13). Due to the two branches in index user,
possible values for p index, at the end of this call line 29, are chunk0
or chunk1. Thus, at line 30, when chunk1 is freed, p index becomes a
dangling pointer. At line 33 a new allocation is placed in p pass, and at
line 38 the value of p pass is compared to the value of p global.
Our VSA analysis is a simpler version of existing ones like [4]. Indeed, we
focus on information that normally do not require sophisticated numer-
ical computations: finding aliases between memory locations, retrieving
heap elements access, and computing allocation sizes. Moreover, it ap-
pears that most of the known UaF vulnerabilities are not sensitive to

4 making our analysis context-sensitive, but not applicable to recursive calls

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

65 / 139 GreHack

Code AbsEnv Heap

22 p_global =(int*) malloc (..) {(p global,(chunk0))} HA = {chunk0}
HF = ∅

26 p_index =(int*) malloc (..) {((EBP0,−24),(chunk1))}
HA =

{chunk0, chunk1}
HF = ∅

7 p_global_save=p_global
{(p global,(chunk0)),

((EBP0,−36),(chunk0))}
HA =

{chunk0, chunk1}
HF = ∅

8 p_global=p
{(p global,(chunk1)),

((EBP0 − 24),(chunk1))}
HA =

{chunk0, chunk1}
HF = ∅

13 p_global=p_global_save
{(p global,(chunk0)),

((EBP0,−36),(chunk0))}
HA =

{chunk0, chunk1}
HF = ∅

29 index_user(p_index)

{(p global,(chunk0, chunk1)),
((EBP0,−24),(chunk1)),
((EBP0,−36),(chunk0))}

HA =
{chunk0, chunk1}

HF = ∅
30 free(p_index) {((EBP0,−24),(chunk1))} HA = {chunk0}

HF = {chunk1}
33 p_pass =(int*) malloc (..) {((EBP0 − 28), (chunk2))} HA = {chunk0, chunk2}

HF = {chunk1}
38 if(* p_pass ==* p_global)

{(p global,(chunk0, chunk1)),
((EBP0 − 28), (chunk2))}

HA = {chunk0, chunk2}
HF = {chunk1}

Table 1. VSA result

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

66 / 139 GreHack

a particular loop iteration. As a result, our analysis is implemented as
a forward traversal of the control-flow graph (CFG) of the application,
where loops are unrolled at most once, representing several executions of
the same loop by a single memory abstraction (location-site abstraction).
Moreover, memory modification is implemented using the so-called weak
update hypothesis [4], in case of approximation.

We give below the transfer functions associated to malloc and free calls.
For a malloc call, ad denotes the parameter, containing the block size,
and r denotes the return value. For a free call, ad denotes the parameter,
containing the pointer to be freed. f ← {x 7→ e} denotes the function
identical to f except at point x where the value is e.

Definition 1. Transfer function associated to a malloc call

fmalloc(pc,HA,HF,AbsEnv, ad, id max) = (HA′, HF ′, r, id max′) with :
r = (baseid max, size(AbsEnv(ad)))
HF ′ = HF
HA′ = HA← {pc 7→ (HA(pc) ∪ {r})}
id max′ = id max + 1

with size(s) = v if s = {v} and size(s) = Any otherwise5.

Definition 2. Transfer function associated to a free call

ffree(pc,HA,HF,AbsEnv, ad) = (HA′, HF ′) with:

HF ′ = HF ← {pc 7→ (HF (pc) ∪ (AbsEnv(ad) ∩HE))}
HA′ = HA← {pc 7→ (HA(pc) \ (AbsEnv(ad) ∩HE))}

(AbsEnv(ad) ∩ HE) is used because AbsEnv(ad) may refer to some
elements that are not in the heap.

3 UaF detection and subgraph extraction

We first explain how the VSA described in the previous section is used
to identify UaF patterns, then we show how to extract program slices
(as parts of the CFG) to fully characterize each UaF.

3.1 UaF Detection

An UaF corresponds to using a dangling pointer. From the results of
VSA we define AccessHeap(pc), the function that returns all elements
of HE that are accessed at pc (AccessHeap : PC → P(HE)). In our
implementation, we use REIL[10] as an intermediate representation. In
REIL, only two instructions are dedicated to memory accesses :

– LDM ad,,reg, to load the content of Mem(ad) into the register reg

– STM reg,,ad, to store the content of the register reg into Mem(ad)

Therefore, we define AccessHeap as follows:

5 A better approximation could be provided if it is required for the exploitability
analysis.

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

67 / 139 GreHack

AccessHeap(LDM ad, , reg) = AbsEnv(ad) ∩HE.
AccessHeap(STM reg, , ad) = AbsEnv(ad) ∩HE

Finally, the set UafSet of all possible UaF vulnerabilities is defined by:

Definition 3. Use after free characterization

UafSet = {(pc, chunk) | chunk ∈ (AccessHeap(pc) ∩HF (pc))}

For example we have AccessHeap(38)={chunk0, chunk1, chunk2} and
then UafSet = {(38, chunk1)}, meaning that chunk1 is dangling and
dereferenced line 38.

3.2 Subgraphs of Use after Free

The last step of GUEB consists in extracting from the initial code a
subgraph containing all the instructions involved in a given UaF. Let
pred be the function that returns all the predecessors of pc (in a CFG),
and pred∗ the transitive closure of pred. Let also point alloc (respectively
point free) be a function that associates to a given chunk the set of pc
where this chunk is allocated (respectively freed). Now, for each pair
(pcuaf , chunkuaf) in UafSet, we slice the initial CFG by selecting the
following program points (starting from pcuaf):

1. all program points between the point causing the UaF, pcuaf , and
one point that frees chunkuaf (in orange), i.e:

pred∗(pcuaf) ∩ succ∗(point free(chunkuaf))

2. all program points between one point that frees chunkuaf , and the
point that allocates chunkuaf (in green), i.e:

pred∗(point free(chunkuaf)) ∩ succ∗(point alloc(chunkuaf))

3. all program points between the point that allocates chunkuaf , and
the entry point of the program (blue points), i.e:

pred∗(point alloc(chunkuaf))

Figure 2 shows the subgraph extracted for our example, at the binary
level. This subgraph is useful to study if an UaF can be exploited, and
how : for instance if a new allocation takes place between a point where
an UaF is freed and dereferenced as at line 33 in our example.

4 Conclusion

First we give some experimental results obtained, then we discuss some
limitations of our current prototype and directions for future work.

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

68 / 139 GreHack

Fig. 2. Guaf

4.1 Experimental results

Our approach has been implemented in a prototype tool, GUEB, devel-
oped in Jython and using IDApro6 to transform the binary in assembly
code. Then, this assembly code is translated into an intermediate rep-
resentation, REIL[10], using BinNavi7. Finally we use Monoreil, a ded-
icated API of BinNavi allowing to easily implement static analysis on
the control flow graph. GUEB was evaluated on a real vulnerability,
the CVE 2011-4130, appearing in ProFTPD (see [15] for a detailed ex-
planation of this CVE). This form of UaF is close to the one of Listing

6 https://www.hex-rays.com/products/ida/index.shtml
7 http://www.zynamics.com/binnavi.html

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

69 / 139 GreHack

1.1 : there exists a path corresponding to an error, where pointers are
not correctly restored. From a static analysis point of view, this case
study introduces several difficulties: large code size, complex structures,
local and global variables, etc. GUEB being a prototype, it is relatively
slow. To speed up the analysis, we manually selected a subset of 10 func-
tions to be analyzed. Nevertheless this experiment is significant enough:
we treat a CFG with around 2200 nodes, in 30 minutes on a proces-
sor i7-2670QM. We identify the UaF without any false positive and the
extracted subgraph is a small slice (it contains 460 nodes).

4.2 Limits and Improvements of VSA implementation

In complement to dynamic tools detecting memory errors during execu-
tions [12,14], we deliberately choose to use a static approach, in order to
address a better coverage of use after free detection. This static approach
can also be used to deeply analyze part of programs, detected as sensi-
ble thanks to more lightweight analysis (including dynamic detection).
Nevertheless our VSA is actually not complete and can be improved in
several ways. First, the value analysis step can be strengthened: cur-
rently loops are expanded at most once, this under-approximation may
lead to false negatives (missing some aliases) and gives inaccurate allo-
cation sizes (not really used for the detection step). Taking into account
allocation into loops is an open problem both at the source and binary
levels [2]. Nevertheless the solution adopted here, consisting in folding
all the nodes allocated at a given allocation site (called ”allocation-site
abstraction” in [2]) appears to be a good trade-off regarding use after free
detections. In particular we do not miss UaFs that (generally) only de-
pend on the number of iterations. From a practical point of view, we also
need to formalise and develop a more efficient interprocedural analysis.
In this current implementation, we use a naive inlining technique, which
does not scale up very well. Using function summaries would probably be
a better solution. Finally, for compatibility with the REIL framework,
GUEB is written in Jython, which is rather slow. Choosing a faster
language (such as Caml or C/C++) would significantly speed up our
implementation

4.3 Perspectives

Approaches aiming to precisely analyse exploitability are generally based
on symbolic or concolic reasoning, as described in [11,8] in the case of
buffer overflow exploitability. The aim we pursue here is to build in-
puts allowing to exploit use-after-free. Thus, the next step consists in
characterizing exploitability of use-after-free, that means the possibility
to modify and control the content of the dangling memory. To do that,
we have to identify executions paths in which some new allocations take
place between the “free” and the “use” operations, and how this allocated
memory can be rewritten from user inputs. This step requires a rather
fine-grain heap model, allowing to simulate the the allocator behaviour
(including potential re-allocations).

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

70 / 139 GreHack

References

1. J. Afek and A. Sharabani. Dangling pointer: Pointer. smashing the
pointer for fun and profit. Black Hat USA, 2007.

2. Gogul Balakrishnan and Thomas Reps. Recency-abstraction for
heap-allocated storage static analysis. In Kwangkeun Yi, editor,
SAS ’06: Static Analysis Symposium, volume 4134 of LNCS, pages
221–239, Berlin, Heidelberg, 2006. Springer-Verlag.

3. Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you
see is not what you execute. ACM Trans. Program. Lang. Syst.,
32(6):23:1–23:84, August 2010.

4. Gogul Balakrishnan and Thomas W. Reps. Analyzing memory ac-
cesses in x86 executables. In Evelyn Duesterwald, editor, CC, volume
2985 of LNCS, pages 5–23. Springer, 2004.

5. Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly,
Renaud Tabary, and Aymeric Vincent. The bincoa framework for bi-
nary code analysis. In Proceedings of CAV’11, pages 165–170, Berlin,
Heidelberg, 2011. Springer-Verlag.

6. David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. Bap: A binary analysis platform. In Proceedings of
the 23rd international conference on Computer aided verification,
CAV’11, pages 463–469, Berlin, Heidelberg, 2011. Springer-Verlag.

7. Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: early detection of dangling pointers in use-after-free and
double-free vulnerabilities. In Mats Per Erik Heimdahl and Zhen-
dong Su, editors, ISSTA, pages 133–143. ACM, 2012.

8. Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. In IEEE Symp. S&P,
pages 380–394, 2012.

9. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-c - a software analysis
perspective. In SEFM, pages 233–247, 2012.

10. Thomas Dullien and Sebastian Porst. Reil: A platform-independent
intermediate representation of disassembled code for static code
analysis. CanSecWest, 2009.

11. Sean Heelan. Automatic generation of control flow hijacking exploits
for software vulnerabilities. Master’s thesis, 2009.

12. Nicholas Nethercote and Julian Seward. Valgrind: A program su-
pervision framework. Electr. Notes Theor. Comput. Sci., 89:44–66,
2003.

13. Sanjay Rawat and Laurent Mounier. Finding buffer overflow induc-
ing loops in binary executables. In Proc of the Sixth International
Conference on Software Security and Reliability, SERE 2012, pages
177–186. IEEE, 2012.

14. Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In
USENIX ATC 2012, 2012.

15. Vupen. Technical analysis of proftpd response pool use-after-
free (cve-2011-4130). http://www.vupen.com/blog/20120110.

Technical_Analysis_of_ProFTPD_Remote_Use_after_free_

CVE-2011-4130_Part_I.php.

Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
GreHack 2013, Grenoble, France

71 / 139 GreHack

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

3.5 Alejandro Nolla/ Amplification DDoS attacks with game servers

3.5.1 Alejandro Nolla

• Security consultant and ethical hacking. Madrid, España.

• twitter: @z0mbiehunt3r

3.5.2 Amplification DDoS attacks with game servers

This paper describes how a DDoS amplification attack using game servers works as well as various methods
to find vulnerable games and techniques to detect this kind of attack and how to try to mitigate these attacks
at different levels of OSI topology as well as different levels at a network schema.

• Talk and paper can be downloaded from http://grehack.org

72 / 139 GreHack

http://grehack.org

Amplification ddos attacks with games servers
from the perspective of both the attacker and

the defender

Alejandro Nolla Blanco – Madrid,Spain – alejandro.nolla@gmail.com

No Institute Given

Abstract

Due to the increase in DDoS attacks in recent years, and more specifically those
called ”amplified attacks”, the author presenting this paper explains the results
of his work focused on amplified DDoS attacks that leverage Online gaming
servers as amplifiers.

This work explains the operation of this kind of attack, methods to identify
vulnerable implementations in game servers and different mitigation approaches
that vary greatly depending on the defender’s point of view and the level at
which remediation measures are taken.

Lastly, statistics are included to show the danger in the rise of such types of
techniques, due to the growing number of vulnerable servers and the ease with
which an attacker could launch an attack using thousands of amplifying servers
in a few minutes.

This paper describes how a DDoS amplification attack works using game
servers and the various methods to identify vulnerable games/servers. It also
explains the techniques to detect and mitigate these attacks.

Keywords: ddos attacks, network security, amplification attacks

1 Introduction

Nowadays, Distributed Denial of Service Attacks, usually known as DDoS at-
tacks, are growingly common and seek very different aims.

The goal can range from financial loss due to service disruption to the use
of a DDoS as a smoke screen while other Network Assets are being attacked,
usually with the intention of stealing information. DDoS are also used as a way
of online extortion where the victim is asked for money to stop the attack.

There are different ways of launching a DDoS attack at different OSI levels,
from a simple TCP flooding to resource exhaustion forcing SSL re-negotiations,
as well as heavy query exploitation through SQL injection. Currently, the most
common attacks are based on TCP/UDP traffic with forged headers and more
recently amplification attacks that relay on DNS protocol to force large/heavy
replies[15].

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

73 / 139 GreHack

2

While these methods of attack are becoming more and more popular with the
passing of time, there are other less known ways to achieve similar results, which
luckily are not exploited so often. Among these methodologies we find DDoS
attacks that use NTP protocol to force an unsolicited flood of troubleshooting
information, attacks that forge SNMP requests or in the case of the attack
detailed in the present paper, where Online gaming servers are used to launch
amplification DDoD attacks[5].

Currently most videogames that reach the market include multiplayer sup-
port and increasingly rely the whole gaming experience on multiplayer action.
This feature needs an engine to allow the integration of player’s models, actions
and achievements within a specific MAP.

Due to the real-time nature of multiplayer gaming, communications latency is
an effect that must be minimized as much as possible, increasing the importance
of gameplay data speed over re-transmission of information lost in transit. These
necessities point at a protocol like UDP as the de-facto standard for the transport
layer.

The use of a connectionless protocol like UDP brings several advantages,
mainly related to network performance, but also carries certain disadvantages
like delegating the verification of session integrity to the upper OSI layers. If
upper layers don’t properly check that data received belongs to the current
session, someone else’s machine without an established session could interfere
with current sessions and, for example, force the server hosting the game to
send unsolicited information to an arbitrary host.

2 How the attack works

Fig. 1. Amplification DDoS attack with game servers

During gameplay, gamers are constantly interchanging information with the
server that hosts the game to maintain, for example, game statistics. Depending

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

74 / 139 GreHack

3

on how the network library is implemented on the server, an attacker could ex-
ploit the mentioned behavior and force the server to send unsolicited information
to a third party.

Thanks to the fact that, generally, information requests to the server only
need a few bytes sent but in turn generate much larger replies, this technique is
an ideal candidate for amplified DDoS attacks.

$ tshark -r udp_quake3_reflected_clean.pcap.cloaked
1 0.000000 192.168.1.39 -> 128.66.0.59 QUAKE3 56 Connectionless Client to Server
2 0.213635 128.66.0.59 -> 192.168.1.39 QUAKE3 1373 Connectionless Server to Client

Fig. 2. Info about Quake3 protocol queries and responses.

The above is an example of an amplification factor of nearly 24,5 times using
a Quake 3 server.

3 Identifying vulnerable implementations

To try and distinguish if a multiplayer game is vulnerable to this type of attack
there are initially three different approaches:

– Sniffing traffic during gameplay with the intention of reproducing the same
behavior later.

– Using Fuzzing techniques at network level against the hosting server to try
and force a stimulus/(non-standard reply).

– Analyzing the source code of the network implementation used by the server,
if available.

The first option, capturing legitimate traffic and re-injecting after modifying
it, is probably the simplest and quickest way to identify potentially vulnerable
implementations, as many games use clear text commands in the communication
between client and server.

>>> hexdump(sniffed_query[’Raw’])
0000 FF FF FF FF 54 53 6F 75 72 63 65 20 45 6E 67 69TSource Engi
0010 6E 65 20 51 75 65 72 79 00 ne Query.

Fig. 3. Example of plain-text based Source protocol

The second option, using fuzzing against the hosting server, has been useful
in lab1 tests to identify requests that, although being smaller than the original,
resulted in specific standard sized replies or even unusually large replies[12].

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

75 / 139 GreHack

4

The third approach used, source code review, resulted useful with Quake 3
and other similar implementations thanks to Id Software publishing the source
code of Quake 3[2] which is also used by ioquake[3], a community maintained
port based on the same implementation. Thanks to the existence of those source
code repositories, white box analysis techniques were used instead of just figuring
things out from the behavior showed during tests.

4 Results obtained

Apart from the results included in this section, different server side network
implementations where found to misbehave, allowing the attacker to force the
same UDP reply to be sent hundreds of times, observing situations where more
than 800 replies were sent for a single request, therefore reaching an amplification
factor of more than 800[6].

The following is a list of affected games and results obtained:

Game Request Response Response Response Amplification
size size (min.) size (max.) size (avg.) factor (avg.)

Counter-Strike 67 bytes 748 bytes 1174 bytes 961,3 bytes x14,34
1.6

Quake 3 55 bytes 941 bytes 1566 bytes 1329 bytes x24,16

Left4Dead 2 67 bytes 181 bytes 232 bytes 205,9 bytes x3.07

Half-Life 1 67 bytes 149 bytes 891 bytes 562 bytes x8,38

Counter-Strike 67 bytes 215 bytes 329 bytes 252,3 bytes X3,76
Source

Call Of Duty 4 53 bytes 1230 bytes 1566 bytes 1448,4 bytes X27,32

Counter-Strike 67 bytes 191 bytes 335 bytes 238,7 bytes X3,56
Global Offensive

Fig. 4. Results obtained during our research

To compile the above list, sites like www.gametracker.com where checked to
identify servers with biggest number of concurrent users, 10 servers per game.

For each of the 10 servers analyzed for every game, only one UDP request
was sent and the reply quantified, including heading information in the packet.

During tests 3 different payloads where used, each corresponding to game
engine[1]:

– Source: ”\xff\xff\xff\xffTSource Engine Query\x00”

– id Tech3: ”\xff\xff\xff\xffgetstatus”

– IW engine: ”\xff\xff\xff\xffgetinfo”

In a few implementations of these game engines it was possible to get the
same reply using only a portion of the payloads above.

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

76 / 139 GreHack

5

As can be seen in the table, replies bigger than Ethernet’s MTU (1500 bytes)
were obtained and meaning that the frame would have to be fragmented further,
utilizing even more resources.

It’s important to stress the so-called ”backscatter” effect, which happens
when the victim receives an unsolicited request for the spoofed query and pro-
cesses it as usual. During tests, behaviors have been seen where the answer to
unsolicited UDP replies consisted in ”Port unreachable” ICMP messages plus
a portion of server response, therefore adding more network traffic to victim’s
interface.

5 Potential impact

With the intention of evaluating the viability of this attack technique in the
Internet, different statistics were gathered regarding servers hosting widespread
games or games with features that would make them ideal for DDoS amplification
attacks.

To complete such task, two web pages were identified that would report the
biggest number of servers per game, which in fact are reference sites for most
”hardcorer” gamers: www.game-monitor.com and www.gametracker.com.

Game game-monitor.com gametracker.com

Counter-Strike 1.6 18.810 26,750

Team Fortress 2 7515 10,767

Quake 3 360 1,115

Left 4 Dead 2 3120 1,392

Half-Life 1 510 216

Counter-Strike Source 6600 12.180

Call Of Duty 4 4035 4,598

Counter-Strike Global Offensive 6975 15,060

Fig. 5. Publicly listed game servers

As can be observed in the above table, at any given time, the number of
servers vulnerable to this type of attack is quite high, and therefore a potential
attacker could obtain a list of thousands of servers ready to be used in a few
minutes just by parsing the two server lists mentioned.

6 Mitigating the attack

Mitigation at application layer

In order to mitigate the attack at application level and try and avoid the servers
from being used as attack amplifiers, developers would commonly implement the
following protection measures:

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

77 / 139 GreHack

6

– Limiting the number of requests an IP Address can make per second[9].
– Checking the request source IP Address against current gamers’IPs.
– Implementing a challenge/response verification scheme using tokens.

Based on the results obtained analyzing the first two mitigation methods,
both of them can be considered insufficient protection due to the following rea-
sons:

– If the number of requests per IP has been limited, an attacker could decrease
the number of requests per server but use more servers concurrently to reach
the same attack bandwidth.

– In case valid IP’s were limited to those of active players, the attack remains
useful against one or more players, taking advantage of the asymmetry be-
tween server and domestic Internet connections, an advantage that can be
used in game contests as it has already a few times.

On the other hand, if tokens are used for session control, special care must be
taken to protect the process against predictability or re-injection attacks, apart
from restricting the use of a specific token to the IP Address that requested it.

Mitigation at network layer

The different approaches to mitigate this attack at network level heavily depend
on the role played at infrastructure level regarding the attack[16].

Generally we can define three types of defensive role or attitude regarding
this kind of attack:

– ISP/Owner of network under attack.
– Owner of server under attack.
– Owner of the game server under attack.

Defense from a Network Owner perspective Mitigation strategies against
DDoS attacks amplified by game servers will depend on the type of ISP, the re-
lationship between peers and the network infrastructure deployed. Also in most
cases the work between upstream peers will be key for proper attack mitiga-
tion[8].

If possible, it is recommended that traffic is filtered at the network edge by
using specific rules that include source and destination IP addresses, while ac-
counting for the performance penalty associated with increasing the rule base[14].

As a last resort, using BGP techniques can be handy, either by using RTBH
(Remotely-Triggered Black Hole) routing/filtering or modifying advertised routes
to redirect traffic to a filtering farm/gateway, so it doesn’t reach the victim[13].

On each case, the pros and cons of the mitigation strategy chosen to manage
backscatter traffic must be balanced, considering the amount of traffic and the
performance degradation introduced by filtering.

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

78 / 139 GreHack

7

Defense from the perspective of an attacked Server Owner In this
scenario the number of possible mitigation actions can be very scarce, with
firewalling traffic from amplifying game servers being the only solution in most
cases.

This approach is only valid in case the bandwidth available in the attacked
server is not overwhelmed by the aggregated traffic provoked by the attack plus
legitimate traffic, otherwise ISP intervention will be necessary.

Defense from the perspective of the Game Server Owner For the prop-
er/correct mitigation of this attack, controls should be placed at the Application
layer by establishing a communications protocol between client and server that
prevents the use of the hosting server as an amplifier. This could be achieved
by implementing a challenge/response scheme and tokens as explained before in
this paper.

In case this kind of protection can’t be established, flooding traffic could be
stopped through firewall rules that perform Traffic Rate Limiting. This technique
effectively creates a threshold of requests per second above which all traffic from
a specific IP will be discarded.

To properly analyze traffic to identify the actual DDoS source IPs, a specific
approach must be taken, and such an approach will greatly depend on the in-
frastructure under attack and the OSI level at which the mitigation will be most
effective.

For example, say we want to mitigate an amplified DDoS attack that uses only
Quake 3 servers. In this scenario, UDP datagram replies sent by the game server
most probably contain ”StatusResponse” at the beginning of the payload[11], but
this depends of factors like game engine version or different security measures
implemented to limit communication rate.

$ tshark -r udp_quake3.pcap.cloaked -R ’udp.srcport == 27960’ -x
33 0.002043 128.66.0.32 -> 128.66.7.9 QUAKE3 60 Connectionless Unknown
0000 76 4b 1e 19 4c 7a c3 bf 4a 3e 59 3c 08 00 45 00 vK..Lz..J>Y<..E.
0010 00 2a 00 00 40 00 3e 11 35 16 80 42 00 20 80 42 .*..@.>.5..B. .B
0020 07 09 6d 38 be c3 00 16 39 5c ff ff ff ff 64 69 ..m8....9\....di
0030 73 63 6f 6e 6e 65 63 74 00 00 00 00 sconnect....

1924 0.112073 128.66.169.222 -> 128.66.7.9 QUAKE3 896 Connectionless Server
to Client
0000 76 4b 1e 19 4c 7a c3 bf 4a 3e 59 3c 08 00 45 00 vK..Lz..J>Y<..E.
0010 03 72 00 00 40 00 76 11 50 0f 80 42 a9 de 80 42 .r..@.v.P..B...B
0020 07 09 6d 38 82 d9 03 5e c4 cc ff ff ff ff 73 74 ..m8...^......st
0030 61 74 75 73 52 65 73 70 6f 6e 73 65 0a 5c 73 76 atusResponse.\sv
0040 5f 61 6c 6c 6f 77 64 6f 77 6e 6c 6f 61 64 5c 30 _allowdownload\0
0050 5c 67 5f 6d 61 74 63 68 6d 6f 64 65 5c 30 5c 67 \g_matchmode\0\g
0060 5f 67 61 6d 65 74 79 70 65 5c 30 5c 73 76 5f 6d _gametype\0\sv_m
0070 61 78 63 6c 69 65 6e 74 73 5c 31 36 5c 73 76 5f axclients\16\sv_
[..]

Fig. 6. Example of UDP received under DDoS attack using Quake3 servers

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

79 / 139 GreHack

8

Once the protocols used and their inner workings have been identified, a traf-
fic fingerprint must be identified to distinguish legitimate traffic from malicious
traffic[10][4]. By using this fingerprint to analyze network traffic, either from a
previous capture or a live capture using a SPAN port, IP addresses from servers
used as amplifiers can be detected and blocked at network level.

As proof of concept, Appendix I includes a small Python script that analyzes
pcaps and extracts Quake 3 servers used as amplifiers in the attack and auto-
matically configures a Cisco IOS device to block them to try and mitigate the
attack.

The application’s workflow is as follows:

Fig. 7. Pcap processing workflow

7 Conclusions

Although DDoS attacks amplified with gaming servers usually achieve amplifica-
tion factors lower than DDoS attacks amplified with DNS Open Resolvers, (x28
vs x70) this technique has certain features that can be attractive to a potential
attacker:

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

80 / 139 GreHack

9

– DDoS attacks amplified with game servers are possible thanks to insecure
server-side session control the and therefore mitigation is more costly than
a DDoS amplified via DNS, as DNS servers usually include secure configu-
rations to mitigate certain DDoS attacks[7].

– Packets generated when using game servers are more common than those
used to force large replies from open DNS resolvers.

– DDoS attacks amplified with game servers are not very well known, and this
makes it difficult to identify and mitigate the attack.

– Due to the variety of UDP ports used by different game engines and the
use of not very well known high ports, it can be misleading and difficult to
identify the attack.

– Online gaming servers use high bandwidth connections to permit hundreds
of concurrent users, which in turn allows for bigger attack capacity.

– It is relatively easy to obtain a list of servers vulnerable to this attack just
by checking one of the many web sites that list online game servers.

For all this reasons, this attack methodology represents a serious enough
menace to raise the alert level against this type of attacks. Rising awareness of
the existence, identification and mitigation of these kinds of attack can become
critical to development departments, system administrators or security consul-
tants.

References

1. Wikipedia, List of game engines. http://en.wikipedia.org/wiki/List_of_game_
engines.

2. d-Software GitHub repository. https://github.com/id-Software.
3. oquake GitHub repository. https://github.com/ioquake.
4. Richard Bejtlich. The practice of network security monitoring : understanding

incident detection and response. No Starch Press, San Francisco, 2013.
5. CVE-1999-1066. Quake I ”smurf” attack. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-1999-1066.
6. CVE-2000-0041. The ”Mac DoS Attack”, a Scheme for Blocking Internet Connec-

tions. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0041.
7. CWE-406. Insufficient Control of Network Message Volume (Network Amplifica-

tion). http://cwe.mitre.org/data/definitions/406.html.
8. P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service

Attacks which employ IP Source Address Spoofing. RFC 2267 (Informational),
January 1998. Obsoleted by RFC 2827.

9. Ryan C. Gordon. [cod] Query limiting message at icculus message boards. https:
//icculus.org/pipermail/cod/2011-August/015397.html.

10. Borja Merino. Instant traffic analysis with Tshark how-to master the terminal-based
version of Wireshark for dealing with network security incidents. Packt Publishing,
Birmingham, U.K, 2013.

11. Wireshark Project. Quake 3 protocol dissector. http://anonsvn.wireshark.org/
wireshark/trunk/epan/dissectors/packet-quake3.c.

12. Michael Sutton. Fuzzing : brute force vulnerabilty discovery. Addison-Wesley,
Upper Saddle River, NJ, 2007.

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

81 / 139 GreHack

10

13. Cisco Systems. Remotely Triggered Black Hole Filtering Destination Based
and Source Based. http://www.cisco.com/en/US/prod/collateral/iosswrel/

ps6537/ps6586/ps6642/prod_white_paper0900aecd80313fac.pdf.
14. G. Raj Upadhaya. BGP Best Practices for ISPs. http://archive.apnic.net/

meetings/22/docs/tut-routing-pres-bgp-bcp.pdf.
15. US-CERT. Alert TA13-088A, DNS Amplification Attacks. http://www.us-cert.

gov/ncas/alerts/TA13-088A.
16. S.T. Zargar, J. Joshi, and D. Tipper. A survey of defense mechanisms against

distributed denial of service (ddos) flooding attacks. Communications Surveys
Tutorials, IEEE, PP(99):1–24, 2013.

APPENDIX I - Quake3 DDoS parser.py

Example of python script to parse pcap files captures while being under a DDoS
amplification attack using Quake 3 servers.

!/ usr / bin / env python
coding : utf -8
Author : Alejandro Nolla - z0mbiehunt3r
Purpose : Example for identifying Quake 3 amplifiers and block them
with Cisco access - list
Created : 21/06/13

import sys

t ry :
from Exscr ipt . u t i l . i n t e r a c t import r e ad l o g i n
from Exscr ipt . p r o t o c o l s import SSH2

except ImportError :
p r i n t ’You need e x s c r i p t (https :// github . com/knipknap/ e x s c r i p t) ’
sys . e x i t (−1)

import l o gg ing
supress everything below error

l o gg ing . getLogger (” scapy . runtime ”) . s e tLeve l (l ogg ing .ERROR)
try :

from scapy . a l l import rdpcap
except ImportError :

p r i n t ’You need scapy (http ://www. secdev . org / p r o j e c t s / scapy /) ’
sys . e x i t (−1)

--

def e x t r a c t quak e 3 amp l i f i e r s (p c ap f i l e p a t h) :

It will classify an IP address as an amplifier if UDP payload
consists of ".... disconnect " or ".... statusResponse " command
#
@param pcap_file_path : Path to pcap file to parse
@type pcap_file_path : str
#
@return : Set with amplifiers servers
@rtype : set

amp l i f i e r s s e r v e r s = s e t ()

rdpcap will read all packets at once , if you need to read
it sequentially take a look to PcapReader
http :// www . sourcecodebrowser . com / scapy /1.0.2/ classscapy_1_1_pcap_reader . html

packets = rdpcap (p cap f i l e pa th , count=1000)

f o r packet in packets :
i f not packet . ha s l aye r (’UDP’) :

cont inue
i f packet . ha s l aye r (’Raw ’) :

raw udp payload = packet . g e t l a y e r (’Raw’)

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

82 / 139 GreHack

11

i p l a y e r = packet . g e t l a y e r (’ IP ’)
i f raw udp payload . load == ’\ x f f \ x f f \ x f f \ x f fd i s c onnec t ’ or\

raw udp payload . load [0 : 1 8] == ’\ x f f \ x f f \ x f f \ x f f s ta tusResponse ’ :
amp l i f i e r s s e r v e r s . add (i p l a y e r . s r c)

return amp l i f i e r s s e r v e r s

i f name ==’ main ’ :
PCAP FILE = ’ . / udp quake3 . pcap . cloaked ’
p r i n t ’ ’ ’ Example o f Quake 3 DDoS amp l i f i c a t i o n attack par s e r to
automat i ca l l y deploy Cisco IOS access− l i s t − by Alejandro Nol la
(z0mbiehunt3r) ’ ’ ’
p r i n t ’ [*] Pars ing %s ’ %PCAP FILE

amp l i f i e r s s e r v e r s = ex t r a c t quak e 3 amp l i f i e r s (PCAP FILE)

pr in t ’ [+] Got %i amp l i f i e r s s e r v e r s being used in the
attack . . . ’ %len (amp l i f i e r s s e r v e r s)

account = r e ad l o g i n () # read login from prompt

conn = SSH2 ()
conn . connect (’ 1 9 2 . 1 6 8 . 1 . 2 4 5 ’)
conn . l o g i n (account)
p r in t conn . re sponse
conn . execute (’ c on f i g t ’)
p r i n t conn . re sponse
create access - list

pr in t ’ [!] Deploying access−l i s t , take a c o f f e e . . . ’
conn . execute (’ ip access− l i s t extended quake3 ddos ’)

f o r s e r v e r in amp l i f i e r s s e r v e r s :
here we directly block IP protocol but we could block UDP for Quake 3
responses and ICMP protocol for traffic potentially being generated
for hosts / ports unreachable and so on typical in DDoS attacks (backscatter effect)
#
Also , we could block only ports being used in the attack (game ones , finite)

conn . execute (’ deny ip host %s any ’ %se rv e r) # add one rule per amplifier

caution with implicit deny (legitimate users ’ traffic , routing protocols , etc)
and with allowing everything else

conn . execute (’ permit ip any any ’)
apply access - list to interface

conn . execute (’ i n t e r f a c e f a s tEthe rne t 1/1 ’)
conn . execute (’ ip access−group quake3 ddos in ’)
quick ’n dirty way for copy running - config startup - config

conn . execute (’do wr ’)
p r in t conn . re sponse

conn . send (’ e x i t \r ’)
conn . c l o s e ()

p r in t ’ [−] SLD−26 s h i e l d deployed ’

Alejandro Nolla/ Amplification DDoS attacks with game servers GreHack 2013, Grenoble, France

83 / 139 GreHack

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

3.6 Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic
Controllers

3.6.1 Eireann Leverett, Reid Wightman

3.6.2 Reid Wightman

twitter: @ReverseICS

3.6.3 Eireann Leverett

Eireann Leverett studied Artificial Intelligence and Software Engineering at Edinburgh University and went
on to get his Masters in Advanced Computer Science at Cambridge. He studied under Frank Stajano and Jon
Crowcroft in Cambridge’s computer security group. In between he worked for GE Energy for 5 years and
has just finished a six month engagement with ABB in their corporate research Dept. He now proudly joins
IOActive to focus on Smart Grid and SCADA systems.

His MPhil thesis at Cambridge was on the increasing connectivity of industrial systems to the public
internet. He focussed on finding the cheapest way to find and visualise these exposures and associated
vulnerabilities. He shared the data with ICS-CERT and other CERT teams globally, and presents regularly to
academics and government agencies on the security of industrial systems.

More importantly, he is a circus and magic enthusiast, and likes to drink beer.
@blackswanburst

3.6.4 Vulnerability Inheritance in Programmable Logic Controllers

200 Programmable Logic Controller (PLC) models from a variety of vendors rely on the same third party
library.This CodeSys Runtime library gives these controllers access to ’ladder logic’. The authors discovered
authentication bypass vulnerabilities in this library. An unauthenticated attackercould potentially upload lad-
der logic to the PLCs or halt the programs presently running. The authors subsequently performed a scan of
the complete IPv4 internet (0.0.0.0/0) to identify controllers, potentially providing access to critical infras-
tructure, and shared that data with trusted incident responders.

• Talk and paper can be downloaded from http://grehack.org

84 / 139 GreHack

http://grehack.org

Vulnerability Inheritance in Programmable
Logic Controllers

Éireann Leverett and Reid Wightman

701 5th Avenue, Suite 6850
Seattle, WA 98104

http://www.ioactive.com

Abstract. 200 Programmable Logic Controller (PLC) models from a
variety of vendors rely on the same third party library. This CodeSys
Runtime library gives the controllers access to ’ladder logic’[2]. The au-
thors discovered authentication bypass vulnerabilities in this library. An
unauthenticated attacker could potentially upload ladder logic to the
PLCs or halt the programs presently running. The authors subsequently
performed a scan of the complete IPv4 internet (0.0.0.0/0) to identify
controllers, potentially providing access to critical infrastructure, and
shared that data with trusted incident responders.

Keywords: Programmable Logic Controller, third party dependency,
IPv4/0 vulnerability scan, embedded systems, critical national infras-
tructure, industrial control systems, security, supply chain, vulnerability
inheritance, ladder logic, incident response

1 Introduction

This paper is a humble case study in industrial control systems (ICS) security.
It descibes the vulnerabilities present in a number of programmable logic con-
trollers (PLCs), and these vulnerabilities were inherited into the PLCs from the
third party library.

The paper is comprised of three basic sections:

1. Descriptions of the vulnerabilities found by Reid Wightman.

2. Analysis of a full IPv4 scan for vulnerable PLCs, and some elaboration of
working with Incident Response (IR) teams.

3. Discussion of how multiple failures to detect vulnerabliities can occur from
development, to supply chain, and finally to open deployment.

It aims to motivate further discussion of supply chain security and industrial
systems security economics.

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

85 / 139 GreHack

2 Éireann Leverett and Reid Wightman

2 PLCs Inherit Vulnerabilities

2.1 Codesys Software

The CoDeSys PLC Runtime can be found on a wide variety of industrial con-
trollers. Everything from low-end valve control PLCs to substation and syn-
crophasor management systems use the CoDeSys software. The CoDeSys PLC
Runtime also runs on a plethora of hardware – everything from embedded Intel
x86 CPUs to PowerPC and m68k CPUs runs the software. There is an entire line
of microcontrollers fabricated by a chipmaker that are designed specifically for
use as CoDeSys processors[14]. The runtime officially supports embedded Win-
dows CE, Linux, and vxWorks operating systems. 3S Software also produces a
’Soft PLC’ which is meant to run CoDeSys logic on desktop and server com-
puter systems. Using Soft PLC, these systems can be used for testing or as a
distributed control system.

Fig. 1. CoDeSys as part of a PLCs software architecture

The CoDeSys runtime is meant to lower the cost of development for PLC
manufacturers. A manufacturer will typically purchase a commercial operating
system such as vxWorks, a separate ICS protocol server such as a Modbus or

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

86 / 139 GreHack

PLC Vulnerability Inheritance 3

DNP3 stack, and perhaps even use another commercial embedded webserver.
Combining these software pieces together allows the manufacturer to focus on
developing PLC hardware.

As an added bonus, using the CoDeSys ladder logic runtime means that the
PLC manufacturer does not need desktop software for writing ladder logic for
their PLC. 3S-Software GmbH, the creators of CoDeSys, produce software for
writing ladder logic already. The PC software will compile and load ladder logic
into the PLC using a small plugin written by the PLC vendor.

2.2 Vulnerabilities in the design phase

The problem is one of insecurities introduced at the design phase of the authen-
tication protocol.

Fig. 2. CoDeSys services provided by the runtime

The CoDeSys runtime listens on a special TCP port (either 1200 or 2455).
This port provides three services for controlling industrial processes. These in-
clude a command line interface, a file transfer service, as well as the ability to
read and write to the PLCs physical IO.

Capabilities available using the CoDeSys runtime include the ability to stop
and start the PLCs ladder logic operation, transferring new ladder logic into the
controller, and direct manipulation of sensor and actuator data.

Theoretically, these operations can only be done by an authorized person. In
reality, no authentication is required to issue these special instructions[10].

3S Software has produced a patched version of their Soft PLC which enables
password protection, but for now embedded products are without mitigation
[11]. For these products, the vendor that manufactured the PLC will need to
create a new firmware image provide their customers with tools to update the
PLC. Firmware updates for PLCs are still an incredibly rare thing, and can be
very difficult for end users to roll out.

Another problem with the CoDeSys runtime is 3S Software’s method of en-
coding their ladder logic. Ladder logic is encoded as native CPU instructions for

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

87 / 139 GreHack

4 Éireann Leverett and Reid Wightman

the PLCs microprocessor. Generally the CoDeSys process runs with administra-
tive privileges. This is because the ladder logic must be able to read and write
to physical hardware outputs. The easiest way for manufacturers to grant this
permission is simply to run the CoDeSys Runtime with Administrator or root
privileges. As a result, in addition to uploading new ladder logic, a malicious
user could insert a rootkit into the PLC. This rootkit could easily block future
logic updates.

Yet another problem with the CoDeSys runtime is the file transfer mecha-
nism. File transfer is used by the PC software to enable the transfer of ladder
logic, as well as to read a ladder logic program from the PLC.

Ladder logic is typically installed on a PLC using a file called DEFAULT.PRG.
A second file, DEFAULT.CHK, acts as a checksum to ensure that DEFAULT.PRG
was transmitted successfully. The file transfer mechanism makes no attempt to
inspect for directory traversal. As a result, the CoDeSys runtime will allow read-
ing and writing to any file on a typical PLC.

The concinnity of all this is an affected controller that has no process control
integrity. Anyone with access to a network hosting an afflicted PLC can update
the logic in the PLC, and can thus control the process1. In addition, it can
allow an attacker to use an afflicted PLC as a persistent foothold on a process
control network. In fact, malicious attackers may have already figured this out
themselves.

In addition to the vulnerabilities found by the Reid Wightman, another re-
searcher discovered other vulnerabilities[12]. This demonstrates independantly
that the quality assurance teams at CoDeSys have failed to capture escaping se-
curity defects on multiple occasions. This is not uncommon because we know the
cost of failure lies with their customers. Perhaps we can take refuge in ’Caveat
emptor’ then, as a protection against vulnerable systems?

Unfortunately, the defects appear to be inherited in over 200 types of prod-
ucts and devices. In a world where industrial system downtime can cost millions
per hour[6], it would be expected that some supply chain quality assurance would
have detected these vulnerabilities. However, to the best of the authors’ knowl-
edge only one company avoided these defects by using a threat modelling process.
How can 200 product lines fail to establish that a password can be bypassed,
allowing rogue ladder logic upload? To those less familiar with these systems,
this is an equivalent of remote code execution from an unauthenticated attacker.

This then leaves us to assume that owners and operators of such vulnerable
and important equipment would at least never place it on the open internet.
Unfortunately, the authors were able to find roughly 600 vulnerable devices
running directly on the open internet, as discussed in the next section.

1 E.G. those that the authors found on the open internet

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

88 / 139 GreHack

PLC Vulnerability Inheritance 5

3 The Scan and The Incident Response

3.1 0.0.0.0/0 vulnerable CoDeSys device scan

Based on other works [9], the authors believed they would find some of these
devices deployed (and thus exposed) on the open internet. Having determined
that they would not crash a device with the scanning script, they set out to scann
IPv4 and find out how many vulnerable controllers there were. To accomplish
this task two linux machines were hosted in two different countries. The scan
methodology consisted of two stages:

1. Using UnicornScan[7] to determine machines with either TCP port 1200 or
2455 open. Please see Figure 3

2. Using an NMAP NSE script to determine which of this subset was a vulner-
able CoDeSys device. Please see Figure 4

The first task took about 6 months and the second about a week to complete.
In total the project spent approximately $500 USD in hosting costs. Reserved
blocks were ignored and people who contacted us with a cease and desist were
removed from the blocks to be scanned. They were able to find us via a webpage
hosted on the servers, if they detected the scans. The contact info page contained
this text:

This server is conducting an internet survey of devices which run the

CoDeSys protocol.

The CoDeSys protocol is used in many industrial control applications

and contains serious vulnerabilities which could impact the integrity

of control systems which use it. The scan sends a harmless query for

the version of CoDeSys running, to verify that the IP is speaking the

CoDeSys protocol.

This protocol should not be internet-facing. This scan will determine

internet-facing controllers and note what their underlying operating

system is.

Findings will be shared with the appropriate IP block administrator

(if available) as well as the responsible CERT team (if available)

so that the controller can be secured.

If you’d like to be added to the blacklist from this scan, please

send an email to admin@example.com

The following IP address is used in the scan: xxx.xxx.xxx.xxx

Amusingly, one organsiation asked us to stop scanning their network but
couldn’t tell us what their IP range was! Luckily, they understood the value of

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

89 / 139 GreHack

6 Éireann Leverett and Reid Wightman

our research and just asked to be informed if they had any vulnerable equipment.
In total the researchers received 11 cease and desist letters while using a packet
per second rate of 750. This means the majority of people do not detect scans
at that rate, or are not interested in these ports. Again this underscores the
vulnerability of industrial systems in a new way, with most organisations failing
to detect reconnaissance on those vulnerable systems.

It will no doubt be asked why the authors did not choose to use ZMAP [13].
The answer is simply that this scan was conducted over the winter of 2012 and
spring of 2013. At that point the ZMAP work cited had not been published. We
will return to the appearance of ZMAP and its impact in a later section.

Below we provide two Hilbert Curve heatmap visualisations of the output of
each stage. They were constructed using IPv4 Heatmap software available from
the Measurement Factory[8]. Both images visualise one pixel as a /14 netblock.
The authors expected a concentration to exist in certain netblocks. However,
either the numbers are too small, or concentrations don’t occur as we expected.

Fig. 3. Task One: Open TCP port 1200 or 2455

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

90 / 139 GreHack

PLC Vulnerability Inheritance 7

Fig. 4. Task Two: 600 vulnerable CoDeSys devices

After analysing the results, it became clear that the bulk of vulnerable
CoDeSys controllers existed primarily in RIPE3, with a smaller amount in ARIN
space. The authors cannot account for this other than to suggest that these
registries cover primarily industrialised nations. The Ten Autonomous System
Numbers with the largest number of exposed PLCs is listed in Table 1.

In Table 2 we can see that the first ten countries account for 66% of the
vulnerable CoDeSys systems found on the internet. This and the table above
motivate our work sharing these vulnerable systems with CERTs who are in-
terested in collaborating with us. It is clear that by working through them to
contact vulnerable asset owners, we can make a substantial impact with just a
few collaborations.

We know that not all of these systems will be classified as critical national
infrastructure (CNI), however we have found that finding exposed industrial
systems is a decent proxy towards protecting CNI. To put it concisely, CNI is
often a subset of ICS/SCADA systems. More importantly, criticality effects can
be produced by affecting a large number of non-critical devices. Consider for

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

91 / 139 GreHack

8 Éireann Leverett and Reid Wightman

Table 1. Ten Autonomous Systems containing the largest number of vulnerable PLCs

PLCs Found ASN CC Registrar AS Name

9 6327 CA arin Shaw Communications Inc.
9 6830 AT ripencc Liberty Global Operations B.V.
12 5610 CZ ripencc Telefonica Czech Republic, a.s.
21 28929 IT ripencc ASDASD-AS ASDASD srl
25 12605 AT ripencc LIWEST Kabelmedien GmbH
28 3269 IT ripencc Telecom Italia S.p.a.
28 3303 CH ripencc Swisscom (Switzerland) Ltd
43 1136 EU ripencc KPN Internet Solutions2

43 286 EU ripencc KPN Internet Backbone
44 3320 DE ripencc Deutsche Telekom AG

example if an attacker decided to target all of the vulnerable devices within a
single country.

Since Italy has the largest number in this particular study, let us use it as an
example. We are left to wonder what the effect would be of a simple attack such
as 81 industrial system devices ceasing to function at the same time. Obviously
there are more subtle uses that require more reconnaisance and intelligence to
create, an effect noted in this excellent paper[1].

Table 2. Ten Countries containing the largest number of vulnerable PLCs

PLCs Found Country Code

21 CA
21 ES
29 CZ
33 AT
33 US
38 CH
60 PL
64 NL
80 DE
81 IT

4 How do such vulnerabilities bypass detection?

While these authentication bypass issues escaped the QA team at CoDeSys, it
is not surprising or particularly uncommon. Software defects have been with us
for a very long time. What is more surprising is that the companies integrating
these libraries also did not detect such vulnerabilities. Do software and firmware
teams relying on third party software simply integrate it without testing? Clearly,

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

92 / 139 GreHack

PLC Vulnerability Inheritance 9

Table 3. Number of Vunerable Devices per RIR

PLCs Found Registry

0 afrnic
4 apnic
6 lacnic
54 arin
526 ripencc

the laudable approaches documented in scholarly articles are not reaching the
engineering teams[5].

The most shocking thing to these researchers is that one year after an ICS-
CERT alert went out to these companies, 600 vulnerable devices can be still
be found on the open internet. Other work tells us that the average patch time
in SCADA environments is 18 months[6]. However, we do find it surprising that
vulnerable systems have not been removed from their internet exposure during
that period. We can only assume either other mitigations are in place, or that the
awareness campaign has yet to penetrate these corners of ICS device deployment.

5 Conclusion

Disregarding the researchers’ time, the cost of this exercise is approximately .86
(USD) cents per vulnerable device found. Using a similar approach in the past
the authors’ were able to find devices at a cost of roughly $1.56 per device. We
aim to motivate other researchers to adopt the same approach and log their cost
per device as a future metric. Why would this metric be interesting or novel?

There are 9 reasons:

1. This metric is methodology and technology independant.
2. As costs for parallelisation fall this is incorporated into the metric.
3. As newer, faster scanners (such as ZMAP) are developed this is also included

in the metric.
4. The density of vulnerability across a network space is factored into the met-

ric.
5. Partial scans can still be used for metrics.
6. We understand the cost to attackers of finding opportunistic targets.
7. We understand the low cost to this methodology of defending.
8. We understand the change over time in the lifecycle of exposure and vulner-

ability.
9. It naturally translates a technical problem into an economic one ready for

debate and policy discussion.

Let us test the assumptions of these metrics by extrapolating the results onto
a theoretical use of ZMAP. In early 2012 it cost the authors of this paper .86
cents per vulnerable CoDeSys device. If they had used ZMAP instead, but the
same hardware and approach the cost would have been .11 cents per device. For

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

93 / 139 GreHack

10 Éireann Leverett and Reid Wightman

clarity, that’s 2 machines at 35 per month, with the scans completing in a single
week. The authors would not scan as quickly as possible, because they believe
this generates more trouble for sysadmins, and more cease and desist letters for
themselves (thus a week).

This clarifies the falling cost of reconnaisance for attackers, and makes it
clear that defenders could benefit from this approach if we remove legal and
administrative barriers to doing so. We believe this metric is the primary contri-
bution of this paper, and the NSE script for finding vulnerable CoDeSys systems
a secondary contribution. The rest of the paper is simply a published record of
the authors’ efforts to help secure the industrial systems of any country in the
world over a six month period.

Considering the riduculously low cost of finding these vulnerable devices,
why hasn’t CoDeSys done this work themselves? This suggests market failure for
ICS security to the authors, although they freely admit they are not economists.
Perhaps we can motivate an economist to examine this case study and publish
their findings. By publishing our costs, we hope this becomes possible in the
future.

The authors think this is an incredibly cheap approach to helping nations
secure their industrial control infrastructure, and as a side effect, verify and en-
hance the protection of their critical national infrastructure. If it sounds crazy
to spend a portion of the money allocated to cyber defense scanning for vulner-
abilities, we would like to point the reader toward excellent work in the security
economics of malware mitigation at scale[4][3]. Where the compromise of indus-
trial infrastructure has the potential to levy a heavy cost incident to society, isn’t
scanning and remediating through incident response teams one of the quietist
and most cost effective ways of reducing national attack surfaces?

References

1. Rid, Thomas. ”Cyber War Will Not Take Place” Journal of Strategic Studies,
(2012)

2. Ladder Logic, http://en.wikipedia.org/wiki/Ladder logic

3. Hofmeyr, Steven, et al. ”Modeling internet-scale policies for cleaning up malware.”
Economics of Information Security and Privacy III. Springer New York, (2013)

4. Clayton, Richard. ”Might Governments Clean-up Malware?.” Communication and
Strategies 81 (2011)

5. Reichenbach, Frank, et al. ”A Pragmatic Approach on Combined Safety and Secu-
rity Risk Analysis.” Software Reliability Engineering Workshops (ISSREW), 2012
IEEE 23rd International Symposium on. IEEE, (2012)

6. Eric Byres and Justin Lowe. The Myths and Facts behind Cyber Security Risks
for Industrial Control Systems. Proceedings of the VDE Kongress, (2004)

7. UnicornScan: Unicorns are fast! www.unicornscan.org/

8. IPv4 Heatmap Software http://maps.measurement-
factory.com/software/index.html

9. Leverett, Eireann P: Quantitatively Assessing and Visualising Industrial System
Attack Surfaces. MPhil Thesis, University of Cambridge Darwin College (2011)

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

94 / 139 GreHack

PLC Vulnerability Inheritance 11

10. N3S-Software CoDeSys Improper Access Control (Update), http://ics-cert.us-
cert.gov/alerts/ICS-ALERT-12-097-02A

11. 3S CoDeSys Multiple Vulnerabilities, http://ics-cert.us-cert.gov/advisories/ICSA-
13-011-01

12. 3S CODESYS Gateway-Server Multiple Vulnerabilities (Update A), http://ics-
cert.us-cert.gov/advisories/ICSA-13-050-01A

13. Zakir Durumeric and Eric Wustrow and J. Alex Halderman: ZMap: Fast Internet-
Wide Scanning and its Security Applications. Proceedings of the 22nd USENIX
Security Symposium, (2013)

14. Beck IPC GmbH sc1x3 CoDeSys Processors, http://www.beck-
ipc.com/en/products/sc1x3/index.asp

Code Appendix

NMAP NSE script for determing vulnerable CoDeSys devices

description = [[development

author = "hdm"

-- minor tweaks and bugfix by krw

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"

categories = {"discovery", "safe"}

local nmap = require "nmap"

local comm = require "comm"

local stdnse = require "stdnse"

local strbuf = require "strbuf"

local nsedebug = require "nsedebug"

-- Script is executed for any TCP port.

portrule = function(host, port)

return port.protocol == "tcp"

-- Grabs a banner and outputs it nicely formatted.

action = function(host, port)

local out = grab_banner(host, port, "\187\187\001\000\000\000\001")

if out == "EOF" then

-- try a big-endian query

out = grab_banner(host, port, "\187\187\000\000\000\001\001")

end

return output(out)

-- Returns a number of milliseconds for use as a socket timeout

-- value (defaults to 5 seconds).

-- @return Number of milliseconds.

function get_timeout()

return 5000

-- Connects to the target on the given port and returns any

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

95 / 139 GreHack

12 Éireann Leverett and Reid Wightman

-- data issued by a listening service.

-- @param host Host Table.

-- @param port Port Table.

-- @return Socket descriptor and initial banner

function grab_banner(host, port, query)

local st, buff, banner

local proto = "tcp"

local socket = nmap.new_socket()

socket:set_timeout(get_timeout())

banner = ""

proto = "tcp"

st = socket:connect(host, port, proto)

if not st then

socket:close()

return nil

end

socket:send(query)

-- Big endian version

-- socket:send("\187\187\000\001\000\000\001")

-- socket:send("\xbb\xbb\x01\x00\x00\x00\x01")

st,banner = socket:receive()

socket:close()

return banner

-- Formats the banner for printing to the port script result.

-- Non-printable characters are hex encoded and the banner is

-- then truncated to fit into the number of lines of output desired.

-- @param out String banner issued by a listening service.

-- @return String formatted for output.

-- Ripped from banner.nse with line wrap disabled (corrupts output)

function output(out)

if type(out) ~= "string" or out == "" then return nil end

local filename = SCRIPT_NAME

local line_len = 75

-- The character width of command/shell prompt window.

local fline_offset = 5

-- number of chars excluding script id not available to the script

-- on the first line

-- number of chars available on the first line of output

-- we’ll skip the first line of output if the filename is looong

local fline_len

if filename:len() < (line_len-fline_offset) then

fline_len = line_len -1 -filename:len() -fline_offset

else

fline_len = 0

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

96 / 139 GreHack

PLC Vulnerability Inheritance 13

end

-- number of chars allowed on subsequent lines

local sline_len = line_len -1 -(fline_offset-2)

-- replace non-printable ascii chars - no need to do the whole string

out = replace_nonprint(out, (out:len() * 3) + 1)

-- 1 extra char so we can truncate below.

-- break into lines - this will look awful if line_len is more than

-- the actual space available on a line...

local ptr = fline_len

local t = {}

t[#t+1] = out

return table.concat(t,"\n")

-- Replaces characters with ASCII values outside of the range of standard printable

-- characters (decimal 32 to 126 inclusive) with hex encoded equivalents.

-- The second parameter dictates the number of characters to return, however, if the

-- last character before the number is reached is one that needs replacing then up to

-- three characters more than this number may be returned.

-- If the second parameter is nil, no limit is applied to the number of characters

-- that may be returned.

-- @param s String on which to perform substitutions.

-- @param len Number of characters to return.

-- @return String.

-- Pulled from banner.nse and mangled to escape \r\t\n separately

function replace_nonprint(s, len)

local t = {}

local count = 0

for c in s:gmatch(".") do

if c:byte() == 9 then

t[#t+1] = ("\\%s"):format("t")

count = count+3

elseif c:byte() == 10 then

t[#t+1] = ("\\%s"):format("n")

count = count+3

elseif c:byte() == 13 then

t[#t+1] = ("\\%s"):format("r")

count = count+3

elseif c:byte() < 32 or c:byte() > 126 then

t[#t+1]=("\\x%s"):format(("0%s"):format(((stdnse.tohex(c:byte())):upper())):sub(-2,-1))

-- capiche

count = count+4

else

t[#t+1] = c

count = count+1

end

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

97 / 139 GreHack

14 Éireann Leverett and Reid Wightman

if type(len) == "number" and count >= len then break end

end

return table.concat(t)

(Script Written by hdmoore and altered and adapted by Reid Wightman)

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
GreHack 2013, Grenoble, France

98 / 139 GreHack

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

3.7 Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting
Privacy Leaks in the RATP App: how we proceeded and what we found

3.7.1 Jagdish Achara

Jagdish Achara got his research master in computer science (Specialty: Services, Security and Networks)
from Nancy University in 2011 and since then, working as an Engineer at Inria Privatics team. He is interested
in the field of “Security and Privacy (S&P) aspects of Internet” in general. As of today, he is focusing on
investigating smart devices (for example, smartphones, smartglasses, smartwatches, smartmeteres etc.) from
S&P point of view. Previously, as part of his master studies, he designed and implemented a decentralized
shared calendar (abbreviated as DeSCal). On holidays (not all of them however!), you could find him in
playgrounds, mountains, parks and of course, somewhere on the roads but rarely in front of the computer.

• http://planete.inrialpes.fr/~achara

• twitter: @JagdishAchara

3.7.2 James-Douglas Lefruit

http://www.linkedin.com/pub/james-douglass-lefruit/18/a67/b49

3.7.3 Vincent Roca

I’m permanent researcher, working at Inria, a French public research institute. Since 2013 I am part of the
Privatics Inria research team that focuses on privacy. Before that, in 2000-2012, I was member of the Planete
Inria research team whose goal was to carry out research in the context of protocol and applications for the
Internet. I also spent three years, in 1997-2000, working as an Associate Professor in the Pierre et Marie
Curie University (Paris 6), in the Network and Performances group.

http://planete.inrialpes.fr/~roca/

3.7.4 Claude Castelluccia

Claude Castelluccia is a research director at INRIA. He is interested in the security of networks, and more
particularly to the security of wireless networks and the Internet. He participates in Europeen project UbiSec
& Sens, which deals with the security of networks of sensors, and RFIDAP ANR project on the security of
RFID systems. He regularly serves on committees of international program evaluation committees and juries
in thesis or habilitation research. He directs doctoral dissertations, and teaches regularly at universities and
engineering schools.

• http://planete.inrialpes.fr/~ccastel

• http://www.linkedin.com/pub/claude-castelluccia/10/984/13b

3.7.5 Detecting Privacy Leaks in the RATP App: how we proceeded and what we found

We analyzed the RATP App, both Android and iOS versions, using instrumented versions of these mobile
OSes that we designed. Our analysis reveals that both versions of this App leak private data to third-party
servers, which is in total contradiction to the In-App privacy policy. The iOS version of this App doesn’t even
respect Apple guidelines on device tracking for advertising purposes and profiles user activities across the
device through various mechanisms that are not supposed to be used by Apps. Even if this work is illustrated
with a single App, we describe an approach that is generic and can be used to detect privacy leaks from any
App. In addition, our findings are representative of a trend of Advertising and Analytics (A&A) librairies that
try to collect as much information as possible regarding the smartphone and user. These libraries also gener-
ate their own persistent identifiers for user profiling across the device to better track the user, and this happens
even if the user has opted-out of device tracking. Above all, all this happens without the user knowledge, and
sometimes even without the App developer’s knowledge who naively includes these libraries during the App
development. Therefore this article raises many questions concerning both the bad practices of some actors

99 / 139 GreHack

http://planete.inrialpes.fr/~achara
http://www.linkedin.com/pub/james-douglass-lefruit/18/a67/b49
http://planete.inrialpes.fr/~roca/
http://planete.inrialpes.fr/~ccastel
http://www.linkedin.com/pub/claude-castelluccia/10/984/13b

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

and the limitations of the privacy control features proposed by iOS/Android Mobile OSs.

• Talk and paper can be downloaded from http://grehack.org

100 / 139 GreHack

http://grehack.org

Detecting Privacy Leaks in the RATP App: how
we proceeded and what we found

Jagdish Prasad Achara, James-Douglass Lefruit,
Vincent Roca, and Claude Castelluccia

Privatics team, Inria, France
jagdish.achara@inria.fr,james-douglass.lefruit@inria.fr,

vincent.roca@inria.fr,claude.castelluccia@inria.fr

Abstract. We analyzed the RATP App, both Android and iOS versions,
using our instrumented versions of these mobile OSs. Our analysis reveals
that both versions of this App leak private data to third-party servers,
which is in total contradiction to the In-App privacy policy. The iOS
version of this App doesn’t even respect Apple guidelines on cross-App
user tracking for advertising purposes and employs various other cross-
App tracking mechanisms that are not supposed to be used by Apps.
Even if this work is illustrated with a single App, we describe an approach
that is generic and can be used to detect privacy leaks from other Apps.
In addition, our findings are representative of a trend in Advertising
and Analytics (A&A) libraries that try to collect as much information as
possible regarding the smartphone and its user to have a better profile of
the user’s interests and behaviors. In fact, in case of iOS, these libraries
even generate their own persistent identifiers and share it with other
Apps through covert channels to better track the user, and this happens
even if the user has opted-out of device tracking for advertising purposes.
Above all, this happens without the user knowledge, and sometimes even
without the App developer’s knowledge who might naively include these
libraries during the App development. Therefore this article raises many
questions concerning both the bad practices employed in the world of
smartphones and the limitations of the privacy control features proposed
by Android/iOS Mobile OSs.

Keywords: Android, iOS, Privacy, RATP App

1 Introduction

In the age of information technology, the ways through which user’s privacy can
be invaded has outgrown, and today, it has become even worse with the ubiqui-
tous use of smartphones. So it is very critical to analyze the privacy risks caused
by the use of smartphones and the mobile Apps. However, analyzing Apps to
detect private data leakage is not a trivial task considering: 1) the closed-nature
of some of the smartphone OSs, and 2) the need to reverse engineer sophisti-
cated techniques employed by Mobile OSs. Among all the mobile OSs available

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

101 / 139 GreHack

today, we target Android and iOS because they cover more than 90% of the
whole smartphone OS market share [20] and represent two different paradigms
of mobile OSs (closed-source nature of iOS while Android being open-source to
some extent).

We analyze iOS and Android Apps by using a combination of static and
dynamic analysis techniques, taking advantage of our instrumented versions of
the OSs. We illustrate this methodology and detail our findings with the RATP
App. The RATP is the French public company that is managing the Paris subway
(metro). It provides a very useful smartphone App that helps users to easily
navigate in the city. We show that the current iOS/Android versions (at the
time of writing) of this App leak many private data to third-party servers, which
totally contradicts the In-App privacy policy.

Beyond this discovery we discuss the situation and the trend we observe in
terms of smartphone users tracking with stable identifiers, and some of the non-
trivial techniques being used to collect information on these smartphones. All
this happens without the user knowledge, and sometimes even without the App
developer’s knowledge who might naively include several A&A libraries in the
App. We discuss the current situation and raise some questions regarding the
bad practices employed in the world of smartphones as well as the responsibilities
of Apple and Google. The privacy control features that are provided by these
Mobile OSs are, in our opinion, both too limited and almost systematically
bypassed by the A&A libraries. Apple and Google cannot ignore this situation.

The paper is structured as follows: we detail the analysis of the iOS version of
the RATP App in section 2 and section 3 does the same for the Android version.
Section 4 presents some related work and finally we conclude with a discussion
of the responsibilities of the various actors.

2 The RATP iOS App

2.1 Instrumented version of iOS

In order to detect if an App accesses, modifies (e.g. hashes or encrypts), or leaks
some private data over the network, we first instrumented the iOS Mobile OS.
Since most of the iOS Apps are written in C/C++/Objective-C, this is done
by loading our custom dynamic library (dylib) at the App process-launch time:
Objective-C run-time provides a method to change the implementation of the
existing methods at run-time, and in case of C/C++ functions, this is done at
assembly language level. In practice, we use the MobileSubstrate [17] framework
that simplifies this task by providing higher-level API for replacement of C/C++
functions and Objective-C methods. So our custom library changes the imple-
mentation of some well-chosen Objective-C methods and C/C++ functions in
order to catch interesting events and stores these events, with the associated
parameters and/or return values, in a local database for later analysis.

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

102 / 139 GreHack

2.2 Privacy leaks to the Adgoji company

The privacy policy (in French; See Figure 1) of RATP’s iOS App (version 5.4.1)
claims: “The services provided by the RATP application, like displaying geo-
targeted ads, does not involve any collection, processing or storage of personal
data” (translated from the French version).

(a) iOS version (b) Android version

Fig. 1. In-App privacy policies of the iOS and Android RATP Apps.

However, in total contradiction to the privacy policy, the RATP App sends
over the network the MAC Address of iPhone’s WiFi chip, the iPhone’s name,
and the list of processes running on it (which reveals a subset of the Apps
installed on your smartphone) among other things, to a remote third-party. The
Listings 1.1 and 1.2 show the data we captured on our iPhone while being sent
over the network by the RATP App. One good news, though: this data is sent
through SSL, not in clear, which avoids eavesdropping.

Fortunately, it is not trivial to detect all the Apps installed on the iPhone:

– iOS doesn’t provide an API to do so, and
– due to sandbox restrictions [15], an App cannot peek into other system

activities or Apps.

However, since this is a highly valuable information to infer the user’s interests,
techniques exist to identify some of them. Here are two techniques, both of them
being used by the RATP App:

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

103 / 139 GreHack

Listing 1.1. Data sent through SSL by iOS App of RATP (Instance 1)

UTF8StringOfDataSentThroughSSL = {"p":["kernel_task","launchd",

"UserEventAgent","sbsettingsd","wifid","powerd","lockdownd",

"mediaserverd","mDNSResponder","locationd","imagent","iaptransportd",

"fseventsd","fairplayd.N94","configd","kbd","CommCenter","BTServer",

"notifyd","aggregated","networkd","itunesstored","apsd","MyWiCore",

"distnoted","tccd","filecoordination","installd","absinthed","timed",

"geod","networkd_privile","lsd","xpcd","accountsd","notification_pro",

"coresymbolicatio","assetsd","AppleIDAuthAgent","dataaccessd",

"SCHelper","backboardd","ptpd","syslogd","dbstorage","SpringBoard",

"Facebook" ,"iFile_", "Messenger" ,"MobilePhone", "MobileVOIP" ,

"MobileSafari" ,"webbookmarksd","eapolclient","mobile_installat",

"AppStore" ,"syncdefaultsd","sociald","sandboxd", "RATP" ,"pasteboardd"],

"additional":{"device_language":"en","country_code":"FR",

"adgoji_sdk_version":"v2.0.2","device_system_name":"iPhone

OS","device_jailbroken":true,"bundle_version":"5.4.1",

"vendorid":"CECC8023-98A2-4005-A1FB-96E3C3DA1E79","allows_voip":false,

"device_model":"iPhone", "macaddress":"60facda10c20" , "asid":

"496EA6D1-5753-40B2-A5C9-5841738374A2" ,"bundle_identifier":

"com.ratp.ratp","system_os_version_name":"iPhone OS", "device name":

"Jagdish’s iPhone" ,"bundle_executable":"RATP",

"device_localized_model":"iPhone", "openudid":

"9c7a916a1703745ded05debc8c3e97bedbc0bcdd" }, "e":

{"782EAF8A-FF82-48EF-B619-211A5CF1F654":[{"n":"start",

"t":1369926018,"nonce":"IEx9HAzG"}]}}

Listing 1.2. Data sent through SSL by iOS App of RATP (Instance 2)

UTF8StringOfDataSentThroughSSL = {"s":["fb210831918949520",

"fb108880882526064", "evernote" ,"fbauth2","fbauth","fb","fblogin",

"fspot-image","fb308918024569", "fspot" ,"fsq+

pjq45qactoijhuqf5l21d5tyur0zosvwmfadyw0pvd4b434e+authorize",

"fsq+pjq45qactoijhuqf5l21d5tyur0zosvwmfadyw0pvd4b434e+reply",

"fsq+pjq45qactoijhuqf5l21d5tyur0zosvwmfadyw0pvd4b434e+post",

"foursquareplugins", "foursquare" ,"fb86734274142","fb124024574287414",

"instagram" ,"fsq+kylm3gjcbtswk4rambrt4uyzq1dqcoc0n2hyjgcvbcbe54rj+post",

"fb-messenger" ,"fb237759909591655", "RunKeeperPro" ,"fb62572192129",

"fb76446685859","fb142349171124", "soundcloud" ,"fb19507961798",

"x-soundcloud","fb110144382383802", "mailto" , "spotify" ,"fb134519659678",

"fb174829003346","fb109306535771","tjc459035295", "twitter" ,

"com.twitter.twitter-iphone","com.twitter.twitter-iphone+1.0.0",

"tweetie" ,"com.atebits.Tweetie2","com.atebits.Tweetie2+2.0.0",

"com.atebits.Tweetie2+2.1.0","com.atebits.Tweetie2+2.1.1",

"com.atebits.Tweetie2+3.0.0","FTP", "PPClient" ,"fb184136951108"]}

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

104 / 139 GreHack

1. Listing the running processes using sysctl [4]: We decrypted (see [1] for
indications of how to proceed) the RATP binary and then, opened it in a
hexeditor; we searched for sysctl and found it (see Figure 2). This confirms
the use of sysctl in the RATP App code (i.e. written by the developer, not
coming from system frameworks/libraries), and this is the method used to
get the process list of Listing 1.1;

2. Detecting if a custom URL can be handled or not: It is also possible to use
the canOpenURL [5] function of UIApplication class (see [6] to know more
about URLSchemes). If the URL is handled, the presence of a particular
App is confirmed, otherwise the App is not installed. A major drawback of
this technique is of course the need to do an active search for each targeted
App, but otherwise it is a very efficient technique. The RATP App uses this
technique too, as shown in Listing 1.2 which lists the URLs handled by the
iPhone, thereby confirming the presence of the corresponding Apps.

Once collected, data is sent to the sdk1.adgoji.com (175.135.20.107) server
owned by Adgoji [2], a mobile audience targeting company. This is again con-
firmed by a static analysis of the App. Figure 3 is a screenshot showing the
decrypted RATP app binary opened in IDA Pro [12]. We see some methods in-
side the AppDetectionController and AdGoJiModel classes. Figure 4 shows the
name of header files generated by running class-dump-z [9] on the decrypted
binary revealing the classes from Adgoji company starting with prefix Adgoji.
So the internals of the RATP App reveal that it uses the Adgoji library which,
in turn, does the job of collecting and sending the information to their server.

To summarize, Adgoji tries to detect the Apps present on the smartphone in
order to profile the user based on its interests, Adgoji collects the MAC Address,
a permanent unique identifier attached to the device, in order to keep the device,
as well as the OpenUDID, a replacement to the now banned UDID and which is
used as a permanent identifier too. They also collect the name of iPhone, either
to know more on the user (this name is often initialized with the real user’s
name, in our case“Jagdishs iPhone”), or to use it as a relatively stable identifier
since the probability the device name changes over the time is very low. Finally
they collect the Advertising Identifier (the "asid" entry), which is an acceptable
practice as it is under the control of the user. How does the Adgoji company
process and/or store this data? Does it further share it with other companies?
We cannot say. The question remains open and only the parties involved can
answer.

2.3 Privacy leaks to the Sofialys company

In addition to Adgoji, the RATP iOS App also sends the data mentioned in List-
ing 1.3 to the 88.190.216.131 IP address. This IP address belongs to Sofialys
[21]1, another mobile advertising company. However, this time data is sent in
cleartext which is not acceptable: we don’t see any point not to use secure

1 Whois [24] and other web services (like infosniper [13] or DShield [10]) reveal so-par-
onl-vip01.sofialys.net as the hostname of the machine. Second level domain sofialys

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

105 / 139 GreHack

Listing 1.3. Data sent by iOS App of RATP in cleartext

UTFStringOfDataSentInCLEAR = {"uage":"","confirm":"1", "imei":

"9c7a916a1703745ded05debc8c3e97bedbc0bcdd" ,"osversion":"iPhone6.1.2",

"odin":"1b84e4efaf650cb9a264a2ff23ca7a67b9bd72f6","umail":"",

"carrier":"", "user position": "45.218156;5.807636" ,"long":"",

"ua":"Mozilla/5.0(iPhone;CPUiPhoneOS6_1_2likeMacOSX)AppleWebKit

/536.26(KHTML,likeGecko)Mobile/10B146","footprint":{"v1":

{"i":"3739335834508445""b""c5kkekILx11ghUfu3Ht43bUZWcHHBNbR0

9AO4it+wtPPCBJagCIo7tgBdMlq6T244EwHnKRzeh1ybrMhKy2SztEU5tD5u5Q

7HAisR57BYIun9aQdp0NsXwp7BXhohS92daScYcMDALqKQhYKZDriEjqW

wtjvR9MrIKfE52EwNcA9CJJkUIT9q7sXkqkvaloOM7tMrNdMiIQYyH0tdNJ+

ax7Ujau/IQ4pPasSXk/m6BIFsAFhjFOng0NuSwtL7e7r95s8wQhWy+

EvJUChPIvIRXZYldCbjfdkrkvNgHZcH59Fj0dBz9Ugbyoj4a/Z60SlU+

EatvNswORMQqdE8djVJmXkGCmwoheU10uQatr4pqA="}},"ugender":"",

"os":"iPhone", "adid": "496EA6D1-5753-40B2-A5C9-5841738374A2" ,

"uphone":"","sdkversion\":"5.0.3","test":"","lat":"","udob":"",

"pid":"4ed37f3f20b4f","lang":"fr_FR","network":"wifi",

"time":"2013-05-3015:45:04","alid":"186","sal":"","uzip":""}

connections. More precisely, the App sends the UDID (Unique Device Identifier)
of the iPhone (erroneously called IMEI in the captured screenshot), as well as
the precise geolocation of the user (one can enter the longitude/latitude men-
tioned and he’ll find where we are working with a 20 meters precision), and
the Advertising Identifier (which is acceptable, as explained above). Except the
Advertising Identifier, everything else happens without the user knowledge.

2.4 What about Apple’s responsibility?

Apple gives users the feeling that they can control what private information is
accessible to Apps in iOS 6. That’s true in case of Location, Contacts, Calendar,
Reminders, Photos, and even your Twitter or Facebook accounts but Apps can
still access other kinds of private data (for example, the MAC Address, Device
Name, List of processes currently running etc.) without users’ knowledge. To
avoid device tracking, Apple has deprecated the use of UDID and replaced it by
a dedicated ‘AdvertisingID’ that a user can reset at any time. This is certainly a
good step to give control back to the user: by resetting this advertising identifier,
trackers should not be able to link what a user has done in the past with what
(s)he would be doing from that point onward with respect to his online activities.
But apparently, the reality is totally different: the Advertising Identifier
only gives an illusion to the user that he is able to opt-out from
device tracking because many tracking libraries are using other stable
identifiers to track users. Below are few techniques that Apps are already
using or might use them:

points to Sofialys as the company this machine might belong to. And finally, the
icon [22] almost confirms this as it is the same as on Sofialys web page [21].

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

106 / 139 GreHack

1. Apps can access the WiFi MAC address (again through sysctl function in
libC dylib) to get a unique identifier permanently tied to a device which
cannot be changed. Fortunately, the access to the MAC address seems to be
banned from the new iOS 7 version [7];

2. Apps can use UIPasteboard [23] to share data (e.g. a unique identifier)
between Apps on a particular device. For example, the Flurry analytics
[11] library, also included in this App binary, is doing it! Flurry creates a
new pasteboard item with name com.flurry.pasteboard of pasteboard type
com.flurry.UID and stores a unique identifier whose hexadecimal repre-
sentation is: <49443337 38383436 44452d32 3138302d 34414231 2d423536
432d3936 38363839 36443736 35333532 30443544 3338>. Many other ana-
lytic companies (Adgoji for instance) use the OpenUDID [18], which is based
on the use of UIPasteboard to share data between each other. Resetting the
advertising ID will not impact these IDs;

3. Apps can use the device name as an identifier, even if it is far from being a
unique identifier. People generally don’t change it periodically. Even if it is
not unique, this is in practice a relatively stable identifier;

4. Apps can simply store the advertising identifier in some permanent place
(e.g. persistent storage on the file system), and later, if this ID has been
reset by the user, they can link it with the new advertising identifier. That’s
so trivial to do.

We see that there are several effective techniques to identify a terminal in the
long term, and Apple cannot ignore this trend. Apple needs to take some
rigorous steps in regulating these practices.

Also, we don’t understand why Apple is not giving control to the user to let
him choose if an App can access the device name or not (we’ve seen that this is
an information commonly collected by Apps). We have developed an extension
to the iOS 6 privacy dashboard to demonstrate its feasibility and usefulness. Our
extension to the privacy dashboard lets users choose if an App can access the
device name and if it can access the Internet (See our privacy extension package
[14]). It is surely not sufficient, but it is required.

The Apple privacy dashboard added in iOS6 does not help so much:

– A&A libraries included by the App developer have access to the same set
of user’s private data as the App itself. However, a user granting access to
his/her Contacts to an App does not indicate consent for this data to be
shared with other third-parties (in particular A&A companies). Whether
and where the personal information is sent, is not under the control of the
user via the privacy dashboard;

– We believe that an authorization system that does not consider any behav-
ioral analysis is not sufficient. For instance, accessing the device location
upon App installation to enable a per-country personalizing is not compara-
ble to accessing the location every five minutes. That’s a fundamental limit of
the privacy dashboard system (and the Android authorization system too);

– Also, the permissions for accessing certain private data require a finer gran-
ularity. For instance, accessing the city/state level location or the exact lon-

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

107 / 139 GreHack

Listing 1.4. Data sent in cleartext by Android App of RATP

DataSentInCLEAR =

{ "user position": "45.2115529;5.8037135" ,"ugender":"",

"test":"","uage":"0", "imei": "56b4153b8bd2f6fd242d84b3f63e287" ,"napp":

null,"uemail":"","pid":"4ed37f3f20b4f","alid":"114","uzip":"",

"osversion":"3.0.31-g396c4dfdirty","lang":"en_En","sal":"","network":

"na","adpos":null, "time":"Tue Jun 04 12:05:39 UTC+02:00 2013",

"sdkversion":"3.2", "ua":"Mozilla\/5.0(Linux; U; Android 4.1.1;

fr-fr; Full AOSP on Maguro Build\/JRO03R) AppleWebKit\/534.30

(KHTML, like Gecko) Version\/4.0 Mobile Safari\/534.30","udob":"",

"carrier": "Orange F" ,"longitude":"0.0","latitude":"0.0",

"freespace":null,"unick":null}]

gitude/latitude should be considered differently: certain Apps do not need
the exact location of the user to provide the desired functionality and a user
should not have to grant access to his/her precise location. The same is true
for Address-book and other kinds of private data.

3 The RATP Android App

3.1 Instrumented version of Android

We also analyzed the Android version of the RATP App (version 2.8). Here we
use Taintdroid [27] and in addition we changed the source code of Android itself
when required. We only changed the APIs of interest, like the network APIs
to look for the private data sent over the network. In addition, we use static
analysis of the App to confirm some observations.

3.2 Privacy leaks to the Sofialys company

Figure 1 shows the same privacy policy as that of the iOS version. However
personal information is still collected and transmitted. Listing 1.4 shows data
captured while it is being sent to the network in cleartext by the RATP’s
Android App.

The above data contains some very sensitive information about the user, in
particular:

– The exact location of the user: however the precision is lower than with the
iOS App (a few hundred meters);

– the MD5 hash of the device IMEI: sending a hashed version of this permanent
identifier is better than nothing. However, getting back to the IMEI from
its hash is feasible, and even easy given some information about the device.
For example, if the smartphone manufacturer and model are known, it only
takes less than 1 second on a regular PC (See Figure 5) to recover the IMEI.

– The SIM card’s carrier/operator name.

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

108 / 139 GreHack

Listing 1.5. Permissions required by Android App of RATP

com.fabernovel.ratp.permission.C2D_MESSAGE;

com.google.android.c2dm.permission.RECEIVE;

android.permission.READ_PHONE_STATE;

android.permission.VIBRATE;

android.permission.INTERNET;

android.permission.ACCESS_FINE_LOCATION;

android.permission.ACCESS_COARSE_LOCATION;

android.permission.READ CONTACTS;

android.permission.ACCESS_NETWORK_STATE;

android.permission.READ_CALL_LOG

Here also, the data is sent to a Sofialys server at IP address 88.190.216.131
IP address. This is confirmed by static analysis of the App: we de-compiled
the Apps dex file executed by Dalvik Virtual Machine. We found two third-
party packages: Adbox (with package name com.adbox) and HockeyApp (with
package name net.hockeyapp) (See Figure 6 listing class descriptors). It confirms
that the Sofialys Adbox library is included in the Android version (just like the
iOS version). It is disturbing to see that the RATP continues with these bad
practices whereas the private information leakage to Sofialys has already been
highlighted in the past [8].

Let us have a look at the permissions the App asks (Listing 1.5). The RATP’s
Android App asks far more permissions (Listing 1.5) than it really needs, which
is a trend often followed by Android Apps, in general [28]. We notice that the
App asks for permissions to access the user’s exact position and the user has no
other choice than agreeing in order to install and use the App. This is acceptable
for an application meant to facilitate the use of public transportation. However
the user grants this permission to the App which does not imply that the user
also accepts this information to be sent to a unknown third party server, with
no information on who will store and use this data, and for what purposes. The
Android permission system cannot be interpreted as an informed end-
user agreement for the collection and use of personal data by third-
parties.

4 Related Works

In this domain of smartphones and privacy, PiOS [26] (in case of iOS) and
TaintDroid [27] (in case of Android) are two major contributions. They rely on
totally different approaches, since PiOS employs static analysis of the App bina-
ries, whereas TaintDroid uses a dynamic taint analysis that requires modifying
the Dalvik Virtual Machine. Recent work by Han et al. [30] compares and exam-
ines the difference in the usage of security/privacy sensitive APIs for Android
and iOS. Their analysis revealed that iOS Apps access more privacy-sensitive
APIs than Android Apps: as mentioned in the paper, this is probably due to the

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

109 / 139 GreHack

absence of end user notifications with the iOS version the authors used. However,
since the introduction of iOS6, a user permission is solicited the first time an
App tries to access private data (Contacts, Location, Reminders, Photos, Cal-
endar and Social Networking accounts). Later, iOS remembers and follows the
user preferences, whereas also allowing the user to change his preferences at any
time. [3] discusses Androguard, a tool that can be used for reverse engineering
and malware analysis of Android Apps. In addition, mobilescope was a tool that
has recently been acquired by Evidon and included in their product Evidon En-
compass [16]. This tool analyzes the network traffic using a man-in-the-middle
(MITM) proxy to detect privacy leaks. From this point of view, our approach
is better as more and more Apps can detect MITM proxies and stop working
if one is found (e.g. Facebook). Also, the user needs to know in advance what
data to look for in the network. Furthermore, our instrumented Android system
not only uses TaintDroid [27] but also looks for the private data in the network
traffic leaving the device. This enables us to detect the private data leakage even
if TaintDroid is not able to detect it, which is often the case [29]. In the iOS
world, there has been two other works, namely PMP [25] and PSiOS [31], but yet
again, they don’t provide any insight about the potential private data leakage
over the network: they just deal with mere access to private data. PSiOS is a
system designed for iOS that enables fine-grained policy enforcement but it is
also limited when it comes to the real detection of private data leakage. The sim-
ple access to private data and its transmission over the network are two different
things. Our system is even able to capture to which server the data is actually
sent and thereby, eventually be able to distinguish between first and third-party.
Also, as our analysis is essentially at App run-time, obfuscation techniques can
no longer be used to bypass the detection of private data leakage.

5 Conclusions

This article discusses bad practices employed in the world of smartphones and
the limitations of the privacy control features proposed by Android/iOS Mobile
OSs. The RATP App (iOS 5.4.1 and Android 2.8 versions) provides a good
illustration of bad practices by some companies as many kinds of private data
are collected and sent, and in this example, even if the “legal terms” of the
RATP App claims the contrary.

Android decided to use a user-centric permission system, for the moment
only at installation time, to let the end-user decide whether or not he/she grants
specific permissions to an application (this may change very soon). Obviously
this system does not help so much in controlling what information is captured
and sent: it is a coarse-grained system that works in binary mode, without
any behavioral analysis of the App and without making any difference between
communications to first or third-party servers. In other words, the system has
limited benefits from the end-user point of view.

On the opposite Apple chose to follow market-level checks, plus user-centric
control through a dedicated privacy dashboard, as well as restrictions (UDID

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

110 / 139 GreHack

ban in iOS6, MAC address access in iOS7) associated to incentives to follow
good practices (Advertising ID). In this work we show how A&A companies
have found ways, and even specifically designed techniques to bypass some of
these restrictions. For instance, when the UDID was deprecated and replaced by
an Advertising ID, an OpenUDID service appeared to provide a similar feature
(and this OpenUDID service is used by the RATP App). We also show that
other types of permanent (or at least long term) identifiers are accessed and
transmitted to remote A&A servers (WiFi MAC address, device name, UDID)
in case of the RATP App. The collection of such stable identifiers is highly useful
to A&A companies: a user may reset its Advertising ID as often as he/she wants,
this has no impact on the ability of A&A companies to continue tracking this
device. We cannot imagine that Apple is not aware of the situation.

All of this is happening without the user knowledge and perhaps without
the App developer’s knowledge (were not considering the particular case of the
RATP App here). An App developer often includes an advertising library with-
out knowing its behavior, and if there is no legal risk in case important privacy
leaks are discovered in his App, this developer will probably not care too much.

NB: the RATP has published an answer to our findings. This answer and our
initial blog can be found at [19]:

References

1. A guide on how to decrypt iOS App binaries. http:

//rce64.wordpress.com/2013/01/27/private-decrypting-apps\

\-on-ios-6-multiple-architectures-and-pie/.
2. Adgoji: A mobile analytics company. http://www.adgoji.com/.
3. Androguard. http://code.google.com/p/androguard/.
4. Apple Documentation on sysctl function. http://developer.apple.com/

library/ios/#documentation/system/conceptual/manpages_iphoneos/man3/

sysctl.3.html.
5. Apple Documentation on UIApplication Class. http://developer.apple.

com/library/ios/#DOCUMENTATION/UIKit/Reference/UIApplication_Class/

Reference/Reference.html.
6. Apple Documentation on URLScheme. http://developer.apple.com/

library/ios/#featuredarticles/iPhoneURLScheme_Reference/Introduction/

Introduction.html#//apple_ref/doc/uid/TP40007891-SW1.
7. Apple: iOS 7 returns the same value of MAC address. https://developer.apple.

com/news/?id=8222013a.
8. Blog: RATP Android App leaking private data in clear.

http://www.rfc1149.net/blog/2012/03/20/a-qui-la-ratp-\

\vend-elle-nos-informations-personnelles/.
9. Classdumpz. http://code.google.com/p/networkpx/wiki/class_dump_z.

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

111 / 139 GreHack

10. Dshield tools. https://secure.dshield.org/tools/.
11. Flurry: An analytics company. http://www.flurry.com/flurry-analytics.html.
12. IDA Pro. https://www.hex-rays.com/products/ida/index.shtml.
13. Infosniper IP Geolocalisation service. http://www.infosniper.net/.
14. iOS 6 Privacy Extension package. http://planete.inrialpes.fr/~achara/

mobilitics/iOS6PrivacyExtension.html.
15. iOS Sandboxing: Apple Documentation. http://developer.apple.com/library/

ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/

TheiOSEnvironment/TheiOSEnvironment.html.
16. MobileScope. http://www.evidon.com/mobilescope.
17. MobileSubstrate. http://iphonedevwiki.net/index.php/MobileSubstrate.
18. OpenUDID: Alternative to UDID on iPhone. http://www.flurry.com/

flurry-analytics.html.
19. RATP blog, Privatics team, Inria. http://goo.gl/dyurp.
20. Smartphone OS Market Share. http://www.idc.com/getdoc.jsp?containerId=

prUS24108913.
21. Sofialys. http://www.sofialys.com/en/.
22. Sofialys icon. http://88.190.216.131/favicon.ico.
23. UIPasteboard Apple Documentation. http://developer.apple.com/library/

ios/#documentation/uikit/reference/UIPasteboard_Class/Reference.html.
24. Whois service. http://en.wikipedia.org/wiki/Whois.
25. Y. Agarwal and M. Hall. ProtectMyPrivacy: Detecting and Mitigating Privacy

Leaks on iOS Devices Using Crowdsourcing. In Proceedings of the ACM Interna-
tional Conference on Mobile Systems, Applications and Services (MobiSys), Taipei,
June 2013.

26. M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS : Detecting privacy leaks in
iOS applications. In NDSS 2011, 18th Annual Network and Distributed System
Security Symposium, San Diego, CA, USA, February 2011.

27. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. In Proc. of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Vancouver, Canada, October 2010.

28. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and com-
munications security (CCS), 2011.

29. Golam Sarwar and Olivier Mehani and Roksana Boreli and Dali Kaafar. On the
Effectiveness of Dynamic Taint Analysis for Protecting Against Private Informa-
tion Leaks on Android-based Devices. In SECRYPT 2013, 10th International
Conference on Security and Cryptography, July 2013.

30. J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng. Comparing Mobile Privacy Pro-
tection through Cross-Platform Applications. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA, February
2013.

31. Tim Werthmann and Ralf Hund and Lucas Davi and Ahmad-Reza Sadeghi and
Thorsten Holz. PSiOS: Bring Your Own Privacy & Security to iOS Devices. In
8th ACM Symposium on Information, Computer and Communications Security
(ASIACCS), May, 2013.

6 Some screenshots

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

112 / 139 GreHack

Fig. 2. RATP Binary opened in a hexeditor

Fig. 3. RATP Binary opened in IDA

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

113 / 139 GreHack

Fig. 4. Headers generated by class-dump-z

Fig. 5. IMEI Deanonimyzation given information about device

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

114 / 139 GreHack

Fig. 6. Listing class descriptors of Android App

Fig. 7. Listing AdBox Headers in iOS binary of RATP App

Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the
RATP App: how we proceeded and what we found GreHack 2013, Grenoble, France

115 / 139 GreHack

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

3.8 Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution
of vulnerable DNS servers using asynchronous I/O mechanism

3.8.1 Ruo Ando

Ruo Ando has received Ph.D. from Keio University in Japan.He is now senior security researcher of Na-
tionalInstitute of Information and Communication Technology in Japan. Also, he has been working as
TechnicalOfficial of Ministry of Internal Affairs and Communications since 2006. His research interests
are Cloudcomputing technologies and its security.He has been working in Driverware "Immune" project sup-
ported by USAir Force Office of Scientific Research withGrant Number AOARD 03-4049 in 2005-2006. He
receivedOutstanding Leadership Award in the8th IEEE International Conference on Dependable, Autonomic
and SecureComputing (DASC-09) at China in 2009. He is the member of Trusted Computing Group JRF
(Japan Regional Forum). He has presented in many security conferences such as SysCan Singapore 2009 and
PacSec Tokyo2011. His research products such as inforamtion gathering system, DHT crawler and vulnera-
bility analysissystem are now deployed on the large scale Test bed of National Institute of Information and
CommunicationTechnology. He recently presented secure Cloud computing technologies in Singapore(2009)
and Taiwan(2010).He served as reviewer of Willey Journal of Security and Communications Networks and
IEEE transactions ofInformation Forensics and Security.

• http://sites.google.com/site/andoruo

• @And_Or_R

3.8.2 Yuuki Takano

http://www.informatik.uni-trier.de/~ley/pers/hd/t/Takano:Yuuki

3.8.3 Satoshi Uda

• http://www.uda-lab.imr.tohoku.ac.jp/member/uda_e.html

• http://www.researchgate.net/profile/Satoshi_Uda/

3.8.4 Unraveling large scale geographical distribution of vulnerable DNS servers using asynchronous
I/O mechanism

The Domain Name System (DNS) has become one of the most important infrastructures of Internet. Despite
of its importance, we have not obtained the comprehensive view of DNS servers deployed in real-world to
evaluate the security level with the fine-grained information. This paper we present some results of analyzing
DNS servers in some security concerns such as software version and geographical distribution. In experi-
ment, we have succeeded to obtain information of 10,334,293 DNS servers in 24 hours. For rapid crawling,
we adopt Libevent which provides asynchronous I/O mechanisms and MongoDB which is fast and document
based NoSQL cluster. By analyzing the result of 24 hours monitoring, we have found some important facts
for security assessment of DNS deployment in Internet. For example, more than 1000 servers still uses the
oldest version of BIND 4.x. Besides, we show in-depth study of geographical distribution of vulnerable DNS
servers with time series analysis. It is shown that even advanced IT countries achieving high security level
has "weakest link" which means these countries actually has vulnerable DNS servers. Also, it is turned out
that the large scale information gathering of vulnerable DNS servers could be easily achieved in only several
hours.

• Talk and paper can be downloaded from http://grehack.org

116 / 139 GreHack

http://sites.google.com/site/andoruo
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Takano:Yuuki
http://www.uda-lab.imr.tohoku.ac.jp/member/uda_e.html
http://www.researchgate.net/profile/Satoshi_Uda/
http://grehack.org

Unraveling large scale geographical distribution
of vulnerable DNS servers using asynchronous

I/O mechanism

Ruo Ando †, Yuuki Takano †, Satoshi Uda ††

†Network Security Institute, National Institute of Information and Communication
Technology,

4-2-1 Nukui-Kitamachi, Koganei,
Tokyo 184-8795 Japan

††Research Center For Advanced Computing Infrastructure,
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan

Abstract. The Domain Name System (DNS) has become one of the
most important infrastructures of Internet. Despite of its importance,
we are not able to comprehensive view of the situation of deployment of
DNS servers in real-world and therefore assess the security level accord-
ing to the monitoring results. In this paper we present some results of
analyzing DNS server deployment over Internet fine-grained information
of software versions, geographical locations. In experiment, we have suc-
ceeded to gather information of 10,334,293 DNS servers over the world in
24 by leveraging asynchronous event notification library. For high-speed
active monitoring, we adopt Libevent which provides asynchronous I/O
mechanisms and MongoDB which is fast and scalable NoSQL cluster
software. From monitoring results, we show some findings which should
be considered for security assessment for DNS deployment over Internet.
Surprisingly, more than 1000 DNS servers employ the oldest version of
BIND 4.x which could be easily compromised by malicious hosts. Be-
sides, we show in-depth study of geographical distribution of vulnerable
DNS servers which can provides comprehensive view of security level of
each country. It is turned out that even advanced IT countries achiev-
ing high-security level has ” weakest link” exposed by fine-grained active
monitoring, which means these countries actually have serious vulnera-
bilities concerning IT infrastructure. In addition, it is shown that large
scale active monitoring of DNS servers have been easily achieved within
only several hours.

Keywords: DNS, vulnerability assessment, geographical distribution, asyn-
chronous I/O, rapid and scalable monitoring

1 Introduction

Nowadays, The Domain Name System (DNS) which was originally designed for
one-to-one mapping s between two kinds of logical address space (a domain

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

117 / 139 GreHack

name and an IP address) has a mission-critical infrastructure of Internet. How-
ever, despite its importance, unfortunately, there have been many attacks on
DNS servers using exploitation such as DNS cache poisoning and Open Resolver
based DDoS amplification. To make things worse, only poor and coarse-grained
information was provided about limited region about the situation of DNS de-
ployment over Internet. So far, we have not taken a comprehensive view for
security assessment of DNS server deployment all over the world. In this paper
we present the fine-grained active monitoring results of DNS server deployments.
We show the statistical results of DNS software versions and geographical dis-
tribution of DNS servers. We have inspected the current situation of software
versions such as BIND, DNSMASQ, Nominum and so on.

One of the main important findings is that more than 20,000 servers is still
using obsolete (and therefore vulnerable) DNS software such as BIND 4.x, 8.x
versions. Also, it has been revealed that even advanced IT countries has a weak
link which is built by vulnerable DNS servers remaining unmonitored inside
their countries. In fact, vulnerable servers has been found in the countries where
IT infrastructure is widely pervasive rather than relatively less advanced coun-
tries. For the better security assessment, we have implemented asynchronous I/O
based rapid and massive crawling system which can gathering information all
over the Internet within 24 hours. It is implied that attacks against DNS servers
of old software version could be easily discovered and compromised in a short
time.

The remainder of this paper is structured as follows: we start with introducing
methodology for crawling techniques and its measurement scope in Section 3. In
Section 4, we present the detailed measurement and analysis active monitoring of
DNS servers. Some statistics and ranking about software versions, geographical
location and time series of DNS query response are presented. After related work
of section 5, section 6 presents the evaluation of the monitoring result and some
points which has not been discussed. In Section 7, we conclude and present some
further works.

2 Proposed system

DNS is one of the most scalable systems in Internet. Currently, it is not mea-
sured or estimated accurately how many DNS servers are running in Internet.
However, the number of DNS servers deployed all over the world is huge, which
means monitoring result is big data which cannot be handled by conventional
detection systems. For coping with DNS servers, we have constructed the scal-
able, rapid crawling system using Libevent [14] and MongoDB [15]. Figure 1
show the proposed system which consists of two physical servers.

On frontend server, crawler which employs Libevent (event notification li-
brary) is running concurrently. Crawlers issues queries based on asynchronous
I/O method which is suitable for handling DNS commands of which response
time cannot be estimated exactly. For coping this problem, we employ MongoDB
which is document-based data store on backend cluster. MongoDB is surely scal-

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

118 / 139 GreHack

Fig. 1. Proposed system using Libevent and MongoDB. The handler of crawler on
frontend (callback dns) sends query to store key-value of response from DNS server to
MongoDB on backend.

able and besides has several useful functions for data processing such as aggre-
gating, indexing and sorting using key-value. For example, by leveraging Map-
Reduce, we can easily extract information such as geographical distributions and
statistics of software versions of DNS.

3 Methodology

In this section we present our methodology of active monitoring of DNS servers.
First, some utilities we leverage for rapid and massive monitoring are intro-

duced: 1) Libevent which provides asynchronous I/O mechanism and 2) Mon-
goDB which is document based data store for scalable cluster by advanced func-
tions such as sharding. Second, before presenting the results of our measurement
in Section 3, we discuss the measurement scope of active monitoring for fetching
DNS versions and geological distribution. Then, the kinds of queries our system
issue and the detected version of DNS software is listed.

3.1 Callbacks for asynchronous event notification

Although there has not been exact measurement or estimation, it is sure that
the number of DNS servers is huge. Actually, conventional monitoring method of

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

119 / 139 GreHack

blocking send/recv and SQL database cannot handle this kind of ”big data”. For
achieving rapid, massive and scalable active monitoring of DNS, we implement
asynchronous key-value based tracking system.

Our system design is based two concepts. First, we should consider that
the response time of queried DNS servers cannot be estimated. So we employ
Libevent (event notification library) for providing asynchronous I/O mechanism
between sending and receiving messages. Second, we should cope with mas-
sive query response from numerous DNS servers. Besides, one of the important
purposes of our system is to generate some statistics of monitoring. For this
challenge, we leverage MongoDB which is document-based scalable data store.

As a result, to efficiently gather information of massive DNS servers, we
have succeeded to implement simple querying system in C++ which is able to
handle more than 10 million of DNS queries and answer messages (responses)
by concurrently performing with MongoDB using Libevent.

In deployment, crawlers on frontend uses Libevent and backend analyzer
used MongoDB. The Libevent based crawler which leverages asynchronous I/O
on NoSQL cluster achieves high-speed active monitoring. We have succeeded to
connect 10,334,293 DNS servers in 24 hours.

--- LIST1: send_query in Figure 1 ---

ev_dns = event_new(ev_base, sockfd, EV_READ | EV_PERSIST,

callback_dns, NULL)

event_add(ev_dns, NULL)

timeval tv = {0, QUERY_CYCLE * 1000};

ev_send = event_new(ev_base, -1, EV_TIMEOUT | EV_PERSIST,

send_query, NULL);

event_add(ev_send, &tv);

LIST 1 shows code snippets of two callbacks. There are two terminate con-
ditions for each session to query DNS. Send query issues query about software
versions with timeout (tv). Callback dns process the response from DNS server
which is invoked when file descriptor is available for reading (EV PERSIST). For
each session for querying DNS server, these two callbacks are assigned and pro-
cessed in asynchronous I/O mechanism. In the case that the query has response
(DNS server respond to our crawler), parsed reponse is stored in MongoDB.

--- LIST2: callback DNS in Figure 2 ---

auto_ptr<mongo::DBClientCursor> cur;

mongo::BSONObjBuilder b;

mongo::BSONObj doc;

mongo::Date_t recv_date;

b.append("_id", addr);

b.append("recv_date", recv_date);

-- snip --

p_txt = DNS_RDATA_TO_TXT(it->m_rdata);

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

120 / 139 GreHack

b.append("ver", p_txt->m_txt);

-- snip --

doc = b.obj();

mongo_conn.insert("DNSCrawl.servers", doc);

LIST 2 shows code snippets of processing the answer from DNS servers. Our
system parses the response for getting items such as IP address, recv data and
software versions. Then our system stores these items into list by method chain.
At the last line, our system stores key-value pairs into db of ”DNSCrawl” and
collection of ”servers”.

After gathering information of 10,334,293 servers, we utilize the routines for
aggregation and sorting which is called as Map Reduce. Map Reduce is one of the
useful utilities which MongoDB provides for aggregating and sorting optimized
for large scale data processing. Also, we use MongoDB perl driver to make a
simple script for pre-processing.

There are some reason why we choose MongoDB. For example, MongoDB
could be easily scaled out by sharding. By leveraging these utilities, we have
handled massive query responses from 10,334,293 DNS servers in 24 hours.

3.2 Scalable geolocation lookups

For translating huge output from DNS crawler into geographical information,
we deployed geolocation querier on another physical machine.

Figure 2 shows how crawlers which sends fetched IP (logical) addresses and
our analyzer (extractor) which extracts geographical (physical) address work in
parallel. Crawler and extractor connect MongoDB server in parallel on the left
side of Figure 2. Proposed method is divided into four steps.

[1] Crawler running on frontend stores information about IP

address of each DNS servers into MongoDB.

[2] At the same time, extractor on the right side of figure

is issuing a query.

[3] Then, extractor invokes GeoIP lookup routine to retrieve

geographical information.

[4] Finally, extractor store the results of GeoIP into MongoDB.

In our system, crawlers and extractors are running on two different physical
machines, which enables crawlers and extractors to be scaled out. Importantly,
any modification of data format and processing on one side does not take effects
on the other side.

3.3 Measurement Scope

We have crawled 10,334,293 servers in 24 hours using two machines. In measure-
ment, we have detected old versions of BIND 4.x and 8.x Nomium, PowerDNS
and so on. More than 40% of all connected servers did show the banner. Sur-
prisingly, many DNS servers with the obsolete version of BIND such as 8.x and

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

121 / 139 GreHack

callback_dns(evutil_socket_t
 fd
,

short what, void *
 arg
)

Asynchronous

I/O crawler

MongoDB

NoSQL

Datastore

{ "_id" :
“
x.x.x.x
", "country" : "JP",

"longitude" : "139.751404", "city" :

"Tokyo", "latitude" : "35.685001" }

[3]
GeoIP

Lookup

[1] store (logical address)

[2] query

[4] Store geological information

Fig. 2. Extractor of Geographical information using GeoIP lookup is deployed on an-
other physical machine. Crawling and GeoIP lookup modules can be run in parallel.
Besides, querier of geolocation is able to be scaled out by using flag indicating com-
pleted lookups.

4.x has been detected. Also, we have monitored approximately 94% of all servers
which is registered to APNIC, RIPE, ARIN, LACNIC and AFRNIC.

We have tracked 10,334,293 servers and fetched information corresponding
to items as follows.

– IP address

– recv datetime

– software version

– country, city, latitude and longitude

Among 10,334,293 servers, we have clearly identified about 4 million servers
by the banner in response message. Also, we have extracted geographical location
using GeoIP and measures recv datetime. IP address, version, receiving time is
obtained in real-time. Then geographical information is obtained in off-line on
backend cluster.

Table 1 shows list of software name and its regular expressions. In this paper,
we specify BIND into three category (4.x, 8.x and 9.x). As shown in Table 2,
more than 70% of servers of which the software version was detected are BIND,
DNSMASQ, and Nominum. Also, Table 2 shows types of DNS servers with RIR
(Regional Internet Registry) code.

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

122 / 139 GreHack

Table 1. Regexs for DNS Type Detection

Type of DNS Regex

BIND 9.x ˆ9(\.[0-9])+
BIND 8.x ˆ8(\.[0-9])+
BIND 4.x ˆ4(\.[0-9])+

DNSMASQ ˆdnsmasq
Nominum Vantio ˆNominum Vantio

Nominum ANS ˆNominum ANS
PowerDNS ˆPowerDNS

Unbound ˆunbound
NSD ˆNSD

Windows series .*Windows

4 Measurement and Analysis

In this section, we present the result from our crawling 10,334,293 servers using
asynchronous I/O mechanism which is constructed by event notification library.
First, one of the important our findings that many servers do employ obsolete
version of BIND 4.x, 8.x. Second, we have generated statistics about countries
where each server is running. We have discovered many obsolete DNS versions
and its geographical locations with off-line analysis. Statistics of monitoring re-
sults of software version of BIND 4.x, 8.x and countries are shown in Table
5.

4.1 DNS Versions

Currently, it has been found that Bind 4.x, Bind 8.x and some versions DNS-
MASQ have many serious vulnerabilities and therefore it is strongly recom-
mended to update these version to the latest. Surprisingly we have discovered
1935 servers of BIND 4.x, 15771 servers of BIND 8.x and 946294 servers of
DNSMASQ. Table 3 shows top 15 most frequently appeared version of BIND
4.x, 8.x and DNSMASQ. For example, multiple vulnerability has been found for
DNSMASQ version 2.5 and earlier. Surely, BIND 4.x and 8.x are already obso-
lete and has lots of implementation flaw. Besides, unfortunately, the BIND-8.4.7
which is relatively new version among this list does have vulnerability accord-
ing to www.cvedetails.com [16]. Also, BIND-4.9.11 or earlier has many serious
potential and already-exploited vulnerabilities.

4.2 Geographical location lookups

We have extracted geographical location information after the active monitor-
ing is done. In our system GeoIP is used for each IP address of DNS servers.
GeoIP is a unix command which is called as geoip. As we described earlier, we

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

123 / 139 GreHack

Table 2. Types of DNS Servers with RIR code

Total APNIC RIPE ARIN LACNIC AFRINIC other
Type of DNS # # # # # # #

BIND 9.x 2,369,863 336,263 769,182 860,335 96,703 10,953 296,427
BIND 8.x 15,771 3,265 7,065 3,828 355 15 1,243
BIND 4.x 1,935 99 1,362 349 28 - 97
Dnsmasq 946,294 495,205 158,282 59,145 159,969 25,993 47,700

Nominum Vantio 450,079 209,051 198,019 18,808 14,500 7,465 2,236
Nominum ANS 502 15 23 67 25 - 372

PowerDNS 94,299 4,946 57,115 28,138 1,013 35 3,052
Unbound 30,588 5,461 17,926 5,447 1,030 206 518

NSD 25,837 1,296 7,955 13,835 257 13 2,481
Windows series 5,324 1,296 386 400 3,217 - 25

can’t detect 3,067,979 1,943,992 620,895 291,737 113,120 9,706 88,529
no version info 3,325,822 739,726 1,307,181 710,867 327,504 29,272 211,272

Total 10,334,293 3,740,615 3,145,391 1,992,956 717,721 83,658 653,952

have connected approximately ten million servers in 24 hours. By using GeoIP
utilities. High rate of addresses of these monitored servers has been translated
into country code.

Table 4 lists the top 15 countries where old versions of DNS are deployed.
Servers of which version is BIND 4.x and 8.x are widely deployed in countries
whereas the number of servers of other DNS versions is relatively large. There
are clear different of deployment situation between BIND 4.x and 8.x It is turned
out that advanced IT countries do not always used the latest or relative secure
versions of DNS software, which means that these countries do have a potential
weakest links.

Besides, we have generated two time series of receiving time of query response
in 24 hours. Figure 2 and 3 show the number of DNS servers of which response is
”BIND 4.x” and ”BIND 8.x” detected in every one hour. Although the monitor-
ing results much depends on the order of IP address we have crawled, we have
obtained more than 70% of answers from DNS servers in first 5 hours. In the
view of security assessment, five hours is long enough for attackers to achieve
large scale exploitation and too short to take some countermeasure over boarder
control on defensive side.

5 Related Work

The studies in early phase have been presented by Danzig et al. [1] and Jung et al.
[2]. These two studies analyze lookup behavior from a single local resolver at the
vantage point. Recently there has been many research efforts for measuring and
analyzing DNS resource records. Previous researches can be classified into three

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

124 / 139 GreHack

BIND 4.x BIND 8.x DNSMASQ

BIND-4.9.4 432 BIND-8.4.7-REL 3240 DNSMASQ-2.5.2 379825
BIND-4.9.11 170 BIND-8.3.7-REL 2046 DNSMASQ-2.4.0 323875
BIND-4.9.7 112 BIND-8.3.4-REL 1741 DNSMASQ-2.5.1 199834
BIND-4.9.6-REL 74 BIND-8.2.3-REL 1449 DNSMASQ-2.4.8 103819
BIND-4.9.8-REL 60 BIND-8.2.4-REL 878 DNSMASQ-2.5.5 97604
BIND-4.9.11-REL 55 BIND-8.4.4 815 DNSMASQ-2.1.5 78197
BIND-4.2.7331 53 BIND-8.4.6-REL 615 DNSMASQ-2.1.5 24958
BIND-4.9.7-REL 42 BIND-8.2.2-P7 462 DNSMASQ-2.3.8 17861
BIND-4.9.1 32 BIND-8.4.7 462 DNSMASQ-2.3.6 15411
BIND-4.8.1 32 BIND-8.3.6-REL 462 DNSMASQ-2.6.1 15239
BIND-4.9.3-P1 23 BIND-8.2 275 DNSMASQ-2.2.3 14860
BIND-4.9.4-P1 23 BIND-8.2.7-REL 430 DNSMASQ-2.6.1 15239
BIND-4.9.3 21 BIND-8.4.x 344 DNSMASQ-2.2.3 14860
BIND-4.8.3 10 BIND-8.1.2 82 DNSMASQ-2.4.7 13260
BIND-4.0.1 10 BIND-8.3.1-REL 229 DNSMASQ-2.5.9 8219
Table 3. TOP 15 software versions of BIND 4.x, 8.x and DNSMASQ

#1 China 1055973 #6 Japan 167571 #11 Canada 50553

#2 Taiwan 551156 #7 Thailand 98184 #12 Hong Kong 47005

#3 United States 426306 #8 India 82341 #13 Russia 46560

#4 South Korea 363363 #9 Australia 57174 #14 Germany 37971

#5 Brazil 186218 #10 Romania 50872 #15 England 90083
Table 4. TOP 15 countries which has DNS serevers

BIND 4.x BIND 8.x

England 434 United States 3515

United States 224 Russia 3235

Germany 89 Japan 1780

Sweden 48 Germany 1397

Denmark 43 India 563

Itary 39 Puerto Rico 447

Japan 38 France 388

Russia 32 China 347

Canada 18 Taiwan 341

Hungry 15 Canada 318

China 11 England 275

Brazil 10 Poland 263

Poland 10 Itary 225

Urkrine 6 Ukraine 219

Mexico 6 Brazil 185
Table 5. TOP 15 countries where BIND 4.x, 8.x are deployed.

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

125 / 139 GreHack

Fig. 3. the number of BIND 4.x servers detected every one hour

categories: domain registration inference, DNS lookup behavior and monitoring
on zones’ resource records.

Sprint et al. [2] analyze the delay between the response of the first successfully
resolved traffic and one from a malicious domain. They present some patterns
by correlating data from registries for several top-level domains and a large scale
passive DNS data source. Felegyhazi et al [3] examine the potential of leveraging
properties of domain registrations and the response in DNS Zone files in order
to detecting the malicious use of domains proactively.

Notos[4] and EXPOSURE[5] was designed for building domain’s reputation
by looking up behavior within a local domain under the DNS resolvers. M.
Antonakakis[6] et al. proposed a dynamic reputation system of DNS based on
the assumption that malicious and agile use of DNS has unique characteristics.
They examine the DNS traffic of 1.4 million users in a large ISP network. EXPO-
SURE is a large scale passive DNS data analysis system for detecting malicious
domains which is resolved by botnets. In [6], they employ 15 features which are
extracted from the DNS traffic. They analyze real-world data set of 100 billion
DNS requests for identifying unknown malicious domains.

For queries and responses, DNS resource records (RRs) is used for retrieving
the characteristics of a zone. monitoring and analysis on zones’ resource records
previous studies have used the mechanism of querying the DNS servers to check
the zones’ resource records. DNS resource record is employed for retrieving the
zones’ feature by measuring and alayzing queries and responses. Holz et al. [8]
reveal the technique of employing DNS to establish a proxy network on compro-

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

126 / 139 GreHack

Fig. 4. the number of BIND 8.x servers detected every one hour

mised machines for exploiting illegal online services. This exploitation is called
as FFSNs (fast-flux service networks). M. Antonakakis[9] et al propose Anax
which scans the recursive servers to detect the anomaly cache records for detect
poisoning attacks. This is based on the fact that fast poisoning attacks against
DNS servers allows attackers to change records in open recursive DNS servers.
They have collected cache changes in a geographically-diverse set of 300,000 open
recursive DNS servers.

Related topics of crawling and revealing networks are SSL and DHT. M.
Antonakakis et al. performs the large scale network survey of TLS and SSH
servers [9]. They adopt Libevent for large scale monitoring of vulnerable keys.
C. Zhang [10] et al. implemented asynchronous I/O based crawler for revealing
ecosystem of BitTorrent network which consists of tracker and mainline DHT.
They present TOP 20 tracker organization ranked by the tracker peers about
each country.

6 Discussion

Recently, vulnerable DNS servers have been frequently exploited for establishing
malicious domains. Also, flaw of DNS configurations allow attackers to operate
scams and spam campaigns. From the result of monitoring of 10,334,293 servers,
there have been more than 20,000 servers which could be easily compromised by
attackers. In current situation we have revealed, malicious domain registration

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

127 / 139 GreHack

and a proxy networks can be easily done by exploiting these servers of which
version is obsolete. Also, we have examined time series of query response for
BIND 4.x, 8.x and DNSMASQ. It is turned out that more than 60% of servers
of old versions have been found in 6 hours. It is partly implied from the result
that it is not easy to take countermeasures if attacker begin to exploit these
vulnerable servers in the early phase. Because the early detection over border
control of several countries might take more long time, at least more than 6
hours. Furthermore, there has not been consensus yet about whether monitor-
ing and warning the servers abroad as mitigation is always recommended or not.
For example, although many research effort has been presented about detecting
malicious domains registered in DNS, they have no consensus about the mitiga-
tion and active (and sometimes positive) monitoring DNS servers without any
conditions.

7 Conclusion

In this paper we have presented large scale vulnerability assessment of DNS
servers running all over the world. In spite of its importance, there have not
been few research efforts on providing the comprehensive view and the detailed
report about deployment of DNS servers in real-world networks.

For coping with this situation, we have implemented the asynchronous I/O
based crawling system working with MongoDB which is document-based scalable
NoSQL. Employing Libevent and MongoDB have enabled us to obtain success-
fully information of 10,334,293 DNS servers in 24 hours.

Our contributions are classified into three points.

First, our findings reveal that more than 20,000 servers is still using obsolete
(and therefore vulnerable) DNS software versions. Particularly, more than 1000
servers still uses the oldest version of BIND 4.x. According to this fact, we
can conclude that current situation DNS deployments in Internet do has high
risk Second, we have presented some statistics and ranking concerning software
versions and its geographical distribution. Third, we show in-depth study of
geographical distribution of vulnerable DNS servers with time series analysis.

Lessons from this experiment and monitoring results are classified into two
points. First, even if the country achieving high security level do has a potential
security risk which could be weakest link.

Second, large scale information gathering and exploitation of vulnerable DNS
servers could be easily achieved with relatively low cost implementation and more
importantly, in short time. Actually, in current situation, several hours could be
not enough for taking countermeasures beyond border controls.

For further work, our system can be applied for more detailed security anal-
ysis and evaluation of some DNS exploitation such as malicious domain regis-
tration and fast-flux network service. Proposed method can leverage previous
research effort for offering the potential for discovery of malicious domains on
initial DNS behavior on the early phase. Also, DNS cache poisoning such as

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

128 / 139 GreHack

Kaminsky attack can be evaluated corresponding the global distribution of par-
ticular BIND versions.

References

1. [1] P. Danzig, K. Obraczka, and A. Kumar. An Analysis of Wide-Area Name Server
Traffic: A Study of the Internet Domain Name System. ACM SIGCOMM Computer
Communication Review, 22(4):292, Oct. 1992.
[2] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance and the Ef-
fectiveness of Caching. In Proc. ACM SIGCOMM Internet Measurement Workshop,
San Fransisco, CA, Nov. 2001.
[3] J. M. Spring, L. B. Metcalf, and E. Stoner. Correlating Domain Registrations
and DNS First Activity in General and for Malware. In Proc. Securing and Trusting
Internet Names (SATIN), Teddington, United Kingdom, Apr. 2011.
[4] M. Felegyhazi, C. Kreibich, and V. Paxson. On the Potential of Proactive Domain
Blacklisting. In Proc. 3rd USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), San Jose, CA, Apr. 2010.
[5] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a
Dynamic Reputation System for DNS. In Proc. 19th USENIX Security Symposium,
Washington, DC, Aug. 2010.
[6] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE: Finding Mali-
cious Domains Using Passive DNS Analysis. In Proc. 18th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2011.
[7] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and Detecting
Fast-Flux Service Networks. In Proc. 16th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2008.
[8] M. Antonakakis, D. Dagon, X. Luo, R. Perdisci, W. Lee, and J. Bellmor. A
Centralized Monitoring Infrastructure for Improving DNS Security. In Proc. 13th
International Symposium on Recent Advances in Intrusion Detection (RAID), Ot-
tawa, Ontario, Canada, Sept. 2010.
[9] N. Heninger, Z. Durumeric, E. Wusraw, J. A. Halderman, Mining your Ps and
Qs: detection of widespread weak keys in network devices, In Proc. the 21st USENIX
conference on Security symposium 2012
[10] C. Zhang, P. Dhungel, D. Wu Sun Yat-Sen, K. W. Ross, Unraveling the Bit-
Torrent Ecosystem, IEEE Transactions on Parallel and Distributed Systems 2011.
[11] B. Ager, W. Muhlbauer ETH Zurich, G. Smaragdakis, S. Uhlig, Comparing DNS
resolvers in the wild, IMC ’10 Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement.
[12] P. Vixie. DNS Complexity. ACM Queue, 5(3):24?29,2007.
[13] P. Vixie. What DNS is Not. Commun. ACM,52(12):43?47, 2009.
[14] Libevent: a event notification library
http://libevent.org/
[15] MongoDB: open-source document and leading NoSQL database
http://www.mongodb.org/
[16] BIND vulnerability statistics: cvedetails
http://www.cvedetails.com/product/144/ISC-Bind.html?vendor id=64

Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS
servers using asynchronous I/O mechanism GreHack 2013, Grenoble, France

129 / 139 GreHack

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

3.9 Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to
protect yourself against physical access

3.9.1 Guillaume Jeanne

https://www.linkedin.com/pub/guillaume-jeanne/54/871/b9a

3.9.2 François Desplanques

https://www.linkedin.com/pub/fran%C3%A7ois-desplanques/67/7ba/475

3.9.3 Attacks using malicious devices : a way to protect yourself against physical access

In recent years, attacks by external devices have experienced a growing interest. These devices are every-
where, we live with them and take them everywhere, even at work. By creating corrupted devices, we can
break into private networks which are not connected to the Internet. Just plug the device. This study mainly
focuses on attacks by programmable USB devices. To begin with, we make an inventory of the potential
of these attacks. Then we analyse weaknesses of these attacks and we give several ways to improve them.
Finally, we discuss about various existing measures to limit the impact of such attacks and give countermea-
sures to our own improvements. Talk can be downloaded from http://grehack.org

130 / 139 GreHack

https://www.linkedin.com/pub/guillaume-jeanne/54/871/b9a
https://www.linkedin.com/pub/fran%C3%A7ois-desplanques/67/7ba/475
http://grehack.org

Attacks using malicious devices : a way to protect yourself
against physical access

François Desplanques
Ensimag Student

firstname.lastname@ensimag.fr

Guillaume Jeanne
Ensimag Student

firstname.lastname@ensimag.fr

ABSTRACT
In recent years, attacks by external devices have experienced
a growing interest. These devices are everywhere: we live
with them and take them everywhere even at work. By cre-
ating corrupted devices, we can break into private networks
which are not connected to the Internet. Just plug the de-
vice. This study mainly focuses on attacks by programmable
USB devices. To begin with, we make an inventory of the
potential of these attacks. Then we analyze weaknesses of
these attacks and we give several ways to improve them. Fi-
nally, we discuss about various existing measures to limit
the impact of such attacks and give countermeasures to our
own improvements.

Keywords
Hardware attacks, USB-based microcontroller, Teensy, se-
curity, fake peripheral, pentesting

1. INTRODUCTION
Nowadays, hackers show more and more ingenuity to com-
promise their victims. Remote attacks are no longer stand-
ing alone. Recently a new way was opened : hardware at-
tacks using external peripherals. These peripherals are ev-
erywhere, in our pockets, in our bags, at home and each
one of us owns dozens of them. They are USB keys, ex-
ternal hard disks, mobile phones, mp3 players, cameras and
even keyboards or mice. They are objects of daily life : we
live with them and take them everywhere : in the street, at
school, even at work. These objects contribute to the big
flow of data, but without using the Internet. They partici-
pate in their own data stream that can be compared to old
mails, which were taking a while to get from one point to an-
other and where the information was vacant during the ride
whereas the Internet would be emails of nowadays. These
devices contain a lot of information and even private docu-
ments, such as business or personal data but they also allow
to extract information quickly.

These attacks were quickly mediated because they hit crit-
ical industrial systems such as nuclear power plant with
Stuxnet and Duqu[1], thought these systems were not even
connected to the Internet.

These attacks need to interface with the computer, they tar-
get features of input-output controller (eg: network cards,
firewire controller, programmable PCI controllers, Ether-
net). Here we will focus on the USB port, which has the
advantage of being present on all computers and is reach-
able by everyone.

The context is the following : an attacker has a malicious
USB device and has a way to physically connect it to the
USB port of the victim’s computer. We program these at
software level, which means they can usurp functions of a
peripheral like a keyboard or a mouse. This facilitates the
implementation and makes the detection more complex since
it is difficult to differentiate the actions of a legitimate user
between those coming from the microcontroller. This can
happen in different ways such as an employee who compro-
mise the network of his company (intentionally or not). An-
other way is to hide the peripheral in a common object such
as a keyboard or mouse and offer it to the target[2]. Indeed
we can be attacked everywhere (at the office, at home and
so on) by anyone (a colleague, a friend, ...) It just needs a
few seconds while we are not aware of what is going on in
our computer. Once this is set up the attacker no longer has
physical access to the computer nor to the device. To carry
out such attacks, one of the most appropriate device is The
Teensy[3].

Teensy 3.0

The Teensy USB Development Board was presented for the
first time as a malicious device at the DEFCON18 in 2010
by Adrian Crenshaw [4]. He demonstrated how the Teensy
can act as a keystroke dongle. It can type commands un-
beknownst to the user. Its small size allows it to be hidden
in a real keyboard, in a mouse, or else on a USB key. This

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

131 / 139 GreHack

facilitates the step of connecting the device to the victim’s
computer.

Attacks of this type are being democratized and the com-
munity has grown a lot. Teensy is used today as a pentest
device[5]. In this paper we will focus on possibilities offered
by the Teensy microcontroller, in order to compromise other
systems.

At first, we show a list of possibilities offered by the Teensy:
what are the attacks that have been developed for 3 years.
Then, we will focus on limitations with these attacks and
how we can improve them. Finally we define some counter-
measures appropriated against this type of attack. We are
going to alternatively turn us into the skin of the attacker
and defender.

2. AN OVERVIEW OF TEENSY ATTACKS
Kautilya[6] is an open-source toolkit which provides various
programs for a Human Interface Device (HID) which may
help in order to break in a computer, these programs are
called payloads. The whole Framework is written in Ruby.
Payloads are especially designed to be stored on the ini-
tial memory of the Teensy. It also gives the opportunity to
work with payloads on Windows/Linux/Mac OS X. There
is a great diversity of payload, especially on windows. Most
important ones are :

• Change the default DNS server

• Add a user en enable Telnet

• Download and Execute

• Keylog

• Sniffer

• Browse and Accept Java Signed Applet

• Code execution using DNS TXT queries

• Wireless Rogue AP

All payloads are provided with a description when you se-
lect them. Then, there is a help menu, which step by step
help to design the payload as you wished. Some payloads re-
quire the administrator mode but a lot of them do not need
this. For example, the keylogger payload does not need such
privileges. This payload runs a keylogger written in power-
shell (the Windows advanced shell) and pastes keys to the
website Pastebin, where we can anonymously download and
upload text documents, as a private paste after a given in-
terval which can be configured.

Furthermore, Kautilya also gives some tools like scripts in
order to make the life of the attacker easier. For example, a
script can be used to translate the raw data from Pastebin
to the letters that the user typed.

It is very usual for Kautilya payloads to use Pastebin in or-
der to communicate with the outside. This is also the case
for the ”Download and Execute”. It is one of the most in-
teresting payload because it allows to execute any program

by the targeted computer. In this case, the executable must
first be uploaded in text format on Pastebin using a provided
script. When executed, it downloads the file and converts it
into an executable file thanks to another script, then it exe-
cutes the file. This allows to avoid detection by an intrusion
detection system (IDS) but this not bypass the antivirus de-
tection because it is activated when the file is executed. It
must take care of using a malware whose signature is not
yet recorded by antivirus vendors.

Another framework we have experimented is the Social En-
gineering Toolkit (SET)[7]. This framework is about pen-
testing and is more general than Kautilya : it does not focus
on the Teensy even if a part is devoted to Arduino micro-
controlers. Those attacks are in the ”Social-Engineering At-
tacks” then ”Arduino based vector attack”. Here are the
most important ones:

• Powershell HTTP GET MSF Payload

• Internet Explorer/Firefox Beef Jack Payload

• Go to malicious java site and accept payload

• SDCard 2 Teensy Attack (Deploy Any EXE)

• X10 Arduino Sniffer PDE and Librairies

• Peensy Multi Attack Dip Switch + SDCard attack

An interesting point of the SET framework is the use of the
SD Card to deploy any files on the victim’s computer.

We decided to focus on the Windows Operating System be-
cause it is the most used in the world, both by individuals
and companies. It is also the most studied operating sys-
tem on the computer security field. Nevertheless, since the
Teensy acts as a keyboard, our solutions could be easily
adapted for Linux and MacOS.

3. PROBLEMS AND SOLUTIONS

3.1 Apparent shell window
All payloads are using shells to execute commands. It is
launched by the cmd or the powershell on windows. When
they are launched, a window is opened on the desktop and
therefore the user can see it. It would be better to do this
while the user is gone and we will see later how it is possi-
ble to detect the presence of the user. As there is no 100%
reliable method to detect the user, we have to take into con-
sideration the possibility of him being there. By seeing the
shell, the user will be suspicious. So we decided to make
this window less conspicuous. It is important to know that
the window shell must be in the foreground in order to inter-
cept keystrokes typed. To reduce the visibility of the window
shell, we decided to move it to the bottom right corner of
the screen. Furthermore on Windows, users cannot click on
the close button because it is not apparent.

To achieve that goal, we use a nice feature of the Teensy: it
can act as a USB mouse. We also noticed that this feature
was never used on others payloads that we studied. It is
probably because we can do few actions: click, unclick and

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

132 / 139 GreHack

move the mouse pointer. But we can only move the pointer
to a relative position from the current position of the pointer
and we do not have this initial position. Besides, we do not
know where the windows are displayed on the screen. To
hide the window, we used the trick corresponding to the
following algorithm:

Procedure Hide window:

Press Alt+Space+N

Move pointer to top left

Shift pointer

Click

Move pointer to bottom right

Shift pointer

Unclick

end;

The command Alt+Space+N is standard on Windows and
works for every windows. Its aim is to put the window on
the maximize size and stuck it to the top-left corner.

3.2 Auto Correction
As Teensy acts as a keyboard, it can send data to the system,
but the reception is more complicated. We have no clue
of what is going on the victim’s system. When payload
are launched, there are several factors that can prevent the
payload from being executed: the user closes the window,
types on the keyboard or if commands are sent to fast for
the computer which executes them.

The goal is to know if the script failed in order to restart
later if need be. It is known as auto-correction and it was
studied in [8]. The only data sent by the system to the
Keyboard are the state of 3 leds: NumLock, CapsLock and
ScrollLock.

To detect this, the Teensy began writing a little powershell
script which allows to turn the CapsLock led on.

The Teensy checks if the CapsLock led is on and if it is,
it turns it off. Otherwise it restarts everything from the
beginning or return to the state ”detection of user”, depend-
ing of the payload implementation. Then this script could
be launched after each major step of the payload to see if
everything is going well.

Instead of using the CapsLock led, we decided to use the
ScrollLock led in order to make that check. Indeed this led
is usually less present on Keyboards. It is especially true on
laptops. Thus the user will not see the led blinking. It has
also no impact of the action of the user whereas CapsLock
can bother the user and make him to realize that something
is happening on his computer.

Another technic to verify data that have been transmitted
successfully is to store each command in a batch. Then we
can compute a CRC on this file in order to be sure that
no perturbation happened during the typing of the script.
If it is a sucess, the powershell can turn a specified led of
the keyboard on. Thus the Teensy would know that the
execution went well. Otherwise, the Teensy would demand

again the execution of the script after a delay if the led is not
lighting on. By this way, we ensure that the script executed
on the computer is correct.

3.3 Limited internal memory force the use of
the Internet

As Teensy is a low cost peripheral, it has limited features,
only 16kB of RAM and 130kB of storage.

Specification Teensy 3.0
Processor MK20DX128

32 bit ARM
Cortex-M4
48 MHz

Flash Memory (B) 131072
RAM Memory (B) 16384
EEPROM(B) 2048

This implies that all payloads cannot be stored on the mem-
ory. For example an attacker may want to adapt his program
to several type of computers which increases the size of the
program a lot. It is also especially true in the case when you
want to deploy a file on the computer victim: the size is yet
limited by the capacity of the device.

We have already talked about the trick that Kautilya uses
for that problem: it downloads the payload from Pastebin.
However it fosters another problem: the use of the Inter-
net. It is a problem for two reasons. First, the attacker
must assume that his victim owns an Internet connection,
which will be able to access on the website. Then we loose
the advantage of having a physical access to the computer
by reaching the web. The activity of the Teensy is more
visible when using the Internet because packets are being
transferred through the network. Thus, the network admin-
istrator will be more easily informed of a suspicious activity
and may be able to detect the device. The Internet in a
company is very often monitored by the responsible of the
Security. By scanning the connection, he may detect a sus-
picious activity because there is a permanent flow of data
trying to reach Pastebin at a regular interval. In a security
audit, one of the first thing that will be scanned is packets
transferring through the network. Therefore it is really im-
portant to find a solution which do not use the Internet and
stay local to the computer. It is a sine qua none condition
for the discretion of an attack.

Therefore there are two problems which are related one to
another: the limited capacity of the Teensy and the detec-
tion when using the Internet.

In order to avoid the problem of limited capacity, we have
soldered a memory card reader to the Teensy. It can be done
on the Teensy 3.0 as described in the official website[9]. By
this way, we are able to connect SD card in order to take
benefits of several GigaByte of storage. It is now therefore
possible to embedded files.

It still remains the problem to deploy this file on the victim
computer. The Social Engineering Toolkit provides a solu-
tion for transferring a file from the SD card to the computer.

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

133 / 139 GreHack

The executable is translated into a text file just like it was
done with Kautilya. Then the Teensy opens a NotePad in
the aim to recopy every data from the SD Card. This is done
by using only the Keyboard: every characters are directly
pressed. Afterwards, it also uses a powershell script which
converts this format into a real executable.

This method has a serious drawback. It can be very long
to type all the code from your executable to the Notepad.
Indeed the theoretical maximum rate of a keyboard is 500
characters per seconds. Some Operating System are even
limiting up to 62 characters per seconds[10]. Moreover the
text version of an executable doubles the size in bytes to be
transmitted. For example, the magic flag ’MZ’ of a PE is
considered as two bytes in a program: 0x4d and 0x5a. When
the text version is made, it is written ”4d5a” in the text file
which is actually 4 bytes. Given a 50KB executable, the
text version will be 100KB. It will take between 3 minutes
and 20 seconds, if you have the maximum bandwidth, and
28 minutes, with the limitation, to be transferred to the
computer. Remember that during all this time, a window
for the notepad is still active in the desktop of the user.

Therefore we wanted to improve this time by using directly
a protocol by USB. The Teensy offers this kind of mode with
RAW HID or the Serial mode.

The RAW HID mode has been created in the aim to send
raw data on the USB port. With that protocol, we can
transfer the file, segmented into packets of size 64 bytes,
directly to the computer without using the network. It can
only be detected locally, by the user of the computer.

The speed rate is also much better than the previous method,
we have experimented a rate of 10,5 KB/s bytes per second
on a normal laptop. Moreover the translation into the text
mode is no longer required, it can directly send the data of
the file using the SdFat library [11]. For the same 50KB
executable, it needs about 10 seconds. Moreover there is no
window opened during that time.

The Serial mode is also used to send data. In the case of
the Teensy, it uses indifferently either the port COMX with
X varying between 1 and 9. The first step is to identify
the port really used by the Teensy to send data. With this
mode, the Teensy can send or receive packets of one byte.

The speed rate is even better than the RAW HID method
because we have experimented a rate of 100 KB/s, which is
10 times faster. That is the reason why we’ll use this mode
when we want to transfer data.

In order to use one of this mode, we need to have a program
which runs on the computer’s victim in the aim to receive
data from Teensy. That’s the reason why we need to set up
a protocol of communication between the Teensy and the
computer.

3.4 Communication
One of the biggest problem with the Teensy is the lack of
communication. It is difficult to adapt the behavior of the
Teensy in function of the behavior of the computer. As
we have seen in the Auto-Correction part, it is possible to

make a protocol using the Keyboard leds. There is three
leds which can be turned on and off so it makes 3 bits of
information. It is not very quick and it is not very discrete.
Indeed it seems like Morse Code when you want to dialog
with such a protocol because leds are always blinking.

In order to communicate between the computer’s victim and
the Teensy, we worked on creating a more efficient interface,
which will be a listener. The goal of this program is to listen
directly to the commands of the Teensy and execute orders
that are demanded. It would be an infinite loop which wait
for the order of the Teensy. For example, here is the case of
a deployment of a file in the victim’s system:

While (1):

Wait for an Order

Switch (Order):

Case : Deploy a file

Scan until the COM port has been found

Receive size of deployed file

For i in 1..size:

Copy received packets to the file

Close the file

Launch it in background

Case : ...

We worked on a protocol of communication for the deploy-
ment of a file. At first, the listener scan which COM port
is being used by the Teensy. Then the first data sent by
the Teensy would be the size of the deployed file. It will be
terminated by an ”X” meaning that next packets sent are
the data of the deployed file. For each data received, the
listener copies it to the file previously opened. Then, the
file is closed and it can be launched in background, meaning
that there is no apparent window on the Desktop.

The Teensy would just have to send data directly from the
SD Card:

Initialize the Serial configuration

Initialize the SD Card

Send on Serial the command to deploy a file

Send size of deployed file

Send a "X"

Send packets from SD Card of the file

Here is the architecture of the communication for a malicious
USB mouse:

Architectural Diagram

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

134 / 139 GreHack

There is a USB HUB in order to connect both mouse and
Teensy. By this way, the Teensy is invisible to the victim
and it can communicate with the SD Card in order to drop
some executables, directly by sending data to the listener.

As you may have noticed, there still is one problem with this
listener. How can we send this executable? We used the
drop payload style of SET in order to do so. But the goal is
to be as discrete as possible and we wanted to minimize the
time of the transfer. The only parameter to play with is the
size of the file. In order to achieve that, we made a program
as light as possible. To that purpose we wrote it directly
in assembly with MIASM[?] and make the executable with
Elfesteem[?]. We used only one section that will contain
both the code and the import directory. We reached a size
of 996 bytes for our listener.

At this step, we are still complying to the SET payload type,
which write bytes directly to the NotePad and then open a
powershell to transform the text version into an executable.
However we decided to go further : we don’t want to open a
Notepad and then a Powershell since it is two steps that can
be done in one, directly in the Powershell. Besides the major
part of the whole process is to transfer the text file. For
that purpose, we decided to encode the text file into Base64.
Indeed there are only 95 printable keys on the keyboard and
the closest inferior multiple of 2 is 64. We lower the size of
the file to 6828 Bytes.

We have experimented a time of 14 seconds to launch the
listener, by only pressing keys with the Keyboard as the
Teensy demanded.

Afterwards, the communication protocol is in place : ev-
erything can be done with a maximum of discretion. The
Teensy can adapt his reaction to the behavior of the com-
puter. For example it can be used to detect the version of
Windows and then select an appropriate exploit from the
SD Card adapted to the version of the system. Once the
protocol is set up, the attacker have myriads of possibility.

The dropper is only an example of what can be done with
such a listener but we could guess others commands which
can be executed. For example the listener could provide
pieces of information about the victim’s computer in order to
adapt payloads to the configuration of the computer. Indeed
you can retrieve those by the command ”ver”or ”systeminfo”
in cmd.exe. More interesting point, you can try to determine
the antivirus of your victim and disable it. You also can
modify the registry base of the computer in order to make
the listener or another program persistent.

We could also improve the listener in order to act as a server
between the computer and the Teensy. Once it is uploaded
on the computer, it can send information to the Teensy, for
instance sending user keystroke or private documents to the
SD card if the attacker’s plan is to get back his Teensy later
or identifying version of softwares to try a privilege escala-
tion. The advantage of using directly the Teensy and not
doing it by a program himself is to usurp the user identity.
Indeed some commands would be rejected by the system if
it is a program that demanded them. But we can think of
using the keyboard and the mouse to do it, making the sys-

tem believe that the user is querying it. By this way, we can
for example disable the firewall.

The listener is therefore very powerful when installed. In
order to check that we can reinforce the success of the In-
stallation by setting up a CRC at the very beginning of the
file. It would compute it himself and then send it to the
Teensy. If it is correct, the installation has been completed.
Otherwise, if there is no answer or the checksum is incorrect,
the Teensy would demand a reinstallation of the listener.

3.5 Detecting user presence
As we have seen previously, the execution of an attack by
keystroke is very showy. The attacker can only type com-
mands in a window at the forefront of the operating system.
So it is essential to detect if the user is physically present at
his post before starting execution because if he is, he may
close the shell window that opens or type with his keyboard,
which will modify the script we are writing.

To do that, we can turn on the capslock led, which has the
effect that the user will write in capital letters. Then we
wait ten minutes. If, after this time the led is still on, we
can assume that the user does not use his computer. Of
course this method is not optimal, it means only that the
user is probably not using his keyboard. But he can be in
front of the computer, watching a movie, or using only the
mouse. Today, considering the small amount of information
that Teensy can receive from the system (only status of 3
leds) there is no 100% reliable method. Therefore it justifies
the fact that we try to minimize the visual impact and the
execution time of Teensy attacks.

4. COUNTERMEASURES
First we have to contradict a popular belief: using an ac-
count without administrator privileges of the system is not
sufficient to protect against Teensy payloads. In fact, several
payloads do not need administrator privileges and they can
be very harmful: keylogging, download and execute. Fur-
thermore all Teensy payloads can bypass the Windows User
Account Control (UAC), which is present since Windows
Vista, and have for goal to prevent the system from unde-
sired modifications. To do this, the Teensy acts as if the
user clicked ”yes” by pressing the left arrow and then enter.

Another weak protection against Teensy is to block storage
device, ie block devices that contain memory, such as flash
drives or hard drives. Indeed this policy is often applied in
companies to avoid the leak of information. But here the
Teensy is not seen as a storage device but as a keyboard,
even if it has a SD card.

At the recent conference SSTIC 2013, a talk[12] advises com-
panies to establish a white list of allowed USB devices by
matching the USB descriptor of the device. This descriptor
contains following information: the USB class, the unique
couple vendor ID/product ID, the string description of the
device and many additional information such as the serial
number. With this protection, you can allow only one type
of keyboard of a certain brand. This protection can be by-
passed by the Teensy by changing constants VENDOR ID
and PRODUCT ID in the file usb desc.h. This file contains

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

135 / 139 GreHack

all the variables related to the USB descriptor, it is dynam-
ically compiled when we compile a payload for the Teensy.
These constants represents the USB descriptor that the sys-
tem will see. The attacker still have to determine exactly
which keyboard the victim uses.

Another way in which we might think to protect us is to al-
low only a single pair keyboard / mouse for each computer.
But once again, it is weak: it is possible to program the
Teensy to become a real mouse, connecting it the laser sen-
sor, clicks and wheel. In addition to being a real mouse, it
may also behave maliciously[13]. This remark is also valid
for a keyboard. So the system sees in this case only one
mouse or keyboard connected. It also makes the detection
of the activity of the user much easier because you can know
if he is using his mouse or not.

Finally the best protection is, as far as possible, physically
or software convict USB ports on the computer. This is pos-
sible via the bios or by setting this key to 4 in the Windows
register: HKEY LOCAL MACHINE\SYSTEM\
CurrentControlSet\Services\UsbStor

If you know that you are a victim of these attacks, for in-
stance you saw a window shell automatically type script or
you discovered a Teensy in your mouse, there are various
ways to trace the attacker. First is to check your log brows-
ing history. Kautilya works mainly with Pastebin but it can
be adapted to use other website such as dropbox or anything
else which allows to store text. But interesting fact is when
the payload send content to the internet (keylogging, hash-
dump, wlan password dump) it contains the login and the
password of the user. So you can retrieve the information
that have been leaked.

In the case where the payload download an executable, for
instance like a meterpreter or a simple shell, you can find
by using reverse engineering, the IP server of the attacker.
The main problem is to know the code that was executed
by the Teensy. Several tools exist to dump the memory of
an arduino based controller.

It is difficult to protect against these attacks because the
device tries to act as a normal user and the system cannot
make any difference. The only difference that we noticed
compared to a human is the typing speed of keystroke. As
we see previously, the write speed of the Teensy is between
62 and 500 keystrokes per second, whereas a human person
cannot exceed 10. We used this difference to create a tool
that would block the system if the number of keys typed is
too high. Thereby detecting the presence of an attack by
keyboard.

To do this, we put a keyboard hook. A hook consists in
intercepting function calls to perform pre-processing, such
as changing the arguments. Here it is a hook on the func-
tion that handles keystrokes in order to compute the writing
speed and to cancel the keyboard event if the writing speed
is over 30 keystrokes per second. Thereby, Teensy actions
will be blocked. This tool has blocked all payloads that we
tested, and does not cause any false positive.

But if the attacker has knowledge of such a tool, it can by-

pass it by adding delays between keys. With our tool, an at-
tacker must add a second delay whenever 30 keys are typed.
For instance, the kautilya payload ”download and exec”(that
was described in part 2) is one of the fastest payload to ex-
ecute (14 sec) and sends 1134 key to the system. To bypass
our tool with the method we have just explained, this pay-
load will last 51 seconds, which is 3.6 times longer than the
original one. This time factor is substantially the same for
all payloads, which can lead to very long executions, and
thus increase the probability of detecting an attack.

5. FUTURE WORK
Teensy attacks are only in their beginning, there is much
point to improve. First, the detection part could be more
developed : for instance, we should use sensors such as a
micro to detect if the user is in front of the screen, watch-
ing a movie, or typing on his keyboard. An advantage of
the Teensy is his arduino based architecture which allows to
connect a lot of extensions. This method would be much
more efficient than to look at the keyboard leds. It also
remains to implement the possibilities mentioned in section
3.4 about the listener in order to have better interactions
between the victim’s computer and the Teensy. Finally, to
validate our solutions, we could also test the effectiveness of
these attacks in a real environment such as a company.

6. CONCLUSION
Today’s attacks using external devices are growing. USB
stick, mobile phone, mp3 player or even a mouse can be a
source of infection. The range of possibilities opens up from
day to day, for instance at the upcoming BlackHat Confer-
ence, a research team will present a way to inject malware
into iOS Devices via malicious chargers[14]. In this article
we look at the possibilities offered by this type of attack
by focusing on the Teensy microcontroller on the Windows
operating system, although the results are adaptable for all
operating systems. The great advantage of this type of at-
tack is that they are almost undetectable because they be-
have like a normal user. This article shows the weaknesses of
various attacks and ways to improve them. In particular we
implemented a technique for removing network queries dur-
ing attacks by storing the payload on a SD card and estab-
lishing a communication protocol between the Teensy and
the target. Finally the article shows that most methods set
up against this are inefficient and we propose several ideas
to detect or delay them. To illustrate this, we show a proof
of concept that can detect an Teensy attack by measuring
the tape speed on keyboard. The proliferation of articles on
this subject shows that these attacks are underestimated by
companies.

We also conclude from this analysis an interesting point: the
more information the attacker has about the target (if it uses
tools of detection, keyboard model in a company), the more
chance he has to succeed in his attack.

This article feeds the debate of the ”Bring Your Own De-
vice” (BYOD) [15], and the boundaries between personal
and work spheres. This article shows that the solution to
this issue will go through the development of detection tools,
which are not sufficiently efficient today.

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

136 / 139 GreHack

7. REFERENCES
[1] Stuxnet/Duqu,

“http://www.cs.arizona.edu/ collberg/teaching/466-
566/2012/resources/presentations/2012/topic9-
final/report.pdf.”

[2] H. pierce network with jerry-rigged mouse,
“http://www.theregister.co.uk/2011/06/27/mission
impossible mouse attack.”

[3] Teensy, “http://www.pjrc.com/store/teensy3.html.”

[4] A. Crenshaw,
“https://www.defcon.org/images/defcon-18/dc-18-
presentations/crenshaw/defcon-18-crenshaw-phid-usb-
device.pdf.”

[5] labofapenetrationtester,
“http://labofapenetrationtester.blogspot.fr/2012/04/teensy-
usb-hid-for-penetration-testers.html.”

[6] “Kautilya, http://code.google.com/p/kautilya/.”

[7] TrustedSec,
“https://www.trustedsec.com/downloads/social-
engineer-toolkit/.”

[8] O�ensiveSecurity,
“http://www.o�ensive-security.com/o�sec/advanced-
teensy-penetration-testing-payloads/ - advanced
teensy penetration testing payloads.”

[9] ZTiK.nl, “http://forum.pjrc.com/threads/16758-
teensy-3-microsd-guide - teensy 3 microsd
guide.”

[10] PJRC,
“http://www.pjrc.com/teensy/td keyboard.html.”

[11] SDFatLib, “https://code.google.com/p/sdfatlib/.”

[12] B. Badrignans, “Attaques applicatives via
peripheriques usb modifies infection virale et fuites
d’informations,” 2013.

[13] nes, “http://www.nes.fr/securitylab/?p=532.”

[14] B. iOS malicious chargers,
“http://www.blackhat.com/us-13/brie ¨ ňı �Angs.html.”

[15] P. Pailloux,
“http://www.lemagit.fr/technologie/securite-
technologie/menaces-
informatiques/2012/10/05/patrick-pailloux-anssi-
declenche-une-polemique-autour-du-byod/.”

Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

137 / 139 GreHack

GreHack 2013 organizers/ Thanks GreHack 2013, Grenoble, France

4 GreHack 2013 organizers/ Thanks

Dear attendees,

It has been a great pleasure to welcome you to GreHack 2013 conference. We hope you enjoyed the
technical (and social) program, where we aimed to both learn and discuss the increasing complexity of soft-
ware security and its new challenges. We hope that we have brought a good mix of industrial and academic
achievements, where security continues to be an important research area. We hope that new approaches,
methods and tools presented here will be useful in both industry and academia.

The goal was to bring researchers and practitioners together to discuss state of the art, practice and future
prospects in the field. We hope with this program that we have succeeded in this endeavor.

We like to thank all the submissions and contribution to the program – without all such a hard research
work it would not have been a conference with such an interesting focus. We hope our program will attract
you to participate, read and contribute to further improving the research and collaboration and to participate
to next editions.

The GreHack 2013 organizers
http://grehack.org/en/2013/index.php/Committees-english/

138 / 139 GreHack

http://grehack.org/en/2013/index.php/Committees-english/

SecurityReactions/ Bonus GreHack 2013, Grenoble, France

5 Bonus

5.1 SecurityReactions / When the client asks me to verify their fix

Figure 3: When the client asks me to verify their fix

139 / 139 GreHack

	Introduction
	Epilog – Welcome from the PC Chairs
	Awards
	Organizing Committee
	Special Thanks
	In Memoriam Cédric ``SID'' Blancher
	Programme Committee
	Partners

	Invited Talks
	Herbert Bos/ Tain't not enough time to fuzz all the memory errors
	Herbert Bos
	Tain't not enough time to fuzz all the memory errors

	Halvar Flake/ The many flavors of binary analysis
	Halvar Flake
	The many flavors of binary analysis

	Juan Caballero/ Specialization in the malware distribution ecosystem
	Juan Caballero
	Specialization in the malware distribution ecosystem

	Accepted Papers
	Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and Assessment
	Markku-Juhani Olavi Saarinen
	Developing a Grey Hat C2 and RAT for APT Security Training and Assessment

	Mathieu Cunche/ I know your MAC Address: Targeted tracking of individual using Wi-Fi
	Mathieu Cunche
	I know your MAC Address: Targeted tracking of individual using Wi-Fi

	L. Apvrille, A. Apvrille/ Pre-filtering Mobile Malware with Heuristic Techniques
	Ludovic Apvrille
	Axelle Apvrille
	Pre-filtering Mobile Malware with Heuristic Techniques

	Laurent Mounier, Marie-Laure Potet, Josselin Feist/ Statically Detecting Use After Free on Binary Code
	Marie-Laure Potet
	Laurent Mounier
	Josselin Feist
	Statically Detecting Use After Free on Binary Code

	Alejandro Nolla/ Amplification DDoS attacks with game servers
	Alejandro Nolla
	Amplification DDoS attacks with game servers

	Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
	Eireann Leverett, Reid Wightman
	Reid Wightman
	Eireann Leverett
	Vulnerability Inheritance in Programmable Logic Controllers

	Jagdish Achara, James-Douglas Lefruit, Vincent Roca, Claude Castelluccia/ Detecting Privacy Leaks in the RATP App: how we proceeded and what we found
	Jagdish Achara
	James-Douglas Lefruit
	Vincent Roca
	Claude Castelluccia
	Detecting Privacy Leaks in the RATP App: how we proceeded and what we found

	Ruo Ando, Yuuki Takano, Satoshi Uda/ Unraveling large scale geographical distribution of vulnerable DNS servers using asynchronous I/O mechanism
	Ruo Ando
	Yuuki Takano
	Satoshi Uda
	Unraveling large scale geographical distribution of vulnerable DNS servers using asynchronous I/O mechanism

	Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself against physical access
	Guillaume Jeanne
	François Desplanques
	Attacks using malicious devices : a way to protect yourself against physical access

	GreHack 2013 organizers/ Thanks
	Bonus
	SecurityReactions / When the client asks me to verify their fix

