
Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

3 Accepted Papers

3.1 Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security

Training and Assessment

3.1.1 Markku-Juhani Olavi Saarinen

Dr. Markku-Juhani O. Saarinen is a Research Scientist. He has worked as a Security Engineer, Consultant

and an Academic in the Information Security space for about 15 years. He has authored some 30 peer-

reviewed research papers (mainly on breaking symmetric ciphers) but also maintains a well-rounded skill set

related to real-life hacking and security engineering.

Markku started out as a software engineer and cryptographer with SSH Communications Security in

1997, where he helped to build the now-ubiquitous SSH2 protocol. After couple of years with Nokia Research

and some academic projects, he left to do security consulting in the Middle East in 2004. He operated as a

Penetration Testing professional, Security Auditor (PCI DSS QSA) and built custom network filtering and

monitoring solutions. He enrolled as a part-time student in the Royal Holloway (University of London)

Information Security Ph.D. program in 2005 while continuing to do consulting.

Dr. Saarinen graduated in 2009 with a thesis on Hash Function Cryptanalysis. Prior to joining Temasek

Labs @ NTU, he was a Principal Investigator of a DARPA-Funded lightweight cryptography research project

with (now defunct) Revere Security Corp. of Texas, USA and a Freelance security analyst with Help AG,

Dubai.

3.1.2 Developing a Grey Hat C2 and RAT for APT Security Training and Assessment

We report on the development of a Remote Access Tool (RAT) and related Command and Control (C2) sys-

tem for the purposes of simulating Advanced Persistent Threat (APT) attacks during security audits. The

system, a set of tools collectively called HAGRAT, is a clean-slate in-house development and remarkable

for its compact size. As such, it is backdoor-free and not readily identifiable by Anti-Malware and Intrusion

Detection tools (as it has not been indiscriminately distributed). We discuss the design requirements, imple-

mentation and the actual the effort required todevelop such software.

• Talk and paper can be downloaded from http://grehack.org

12 / 139 GreHack

http://grehack.org

Developing a Grey Hat C2 and RAT for

APT Security Training and Assessment

Markku-Juhani O. Saarinen ⋆

<mjos@cmdctrl.cc>

cmdctrl.cc

Abstract. A Remote Access Tool/Trojan (RAT) is a program that allows an ex-

ternal (malicious) operator to invisibly control a host. The operator may examine

the system contents, transfer files, and run tools such key- and network sniffers

to gain further access. RATs are often inserted on targets by forged e-mails or by

utilizing operating system vulnerabilities. The RAT, upon execution, will contact

an external Command and Control (C2) service which allows prolonged, virtu-

ally untraceable control over the system. RATs have been used in recent years

in many high-profile espionage and financial attacks. To evaluate the prepared-

ness of an organization to detect and counter such a targeted, persistent threat,

a special penetration testing (PENTEST) exercise can be organized. Most RATs

currently come from underworld sources and have backdoors, bugs, and security

weaknesses; utilizing such a RAT in a live security exercise would be extremely

risky. We report on the development of a new “professional” RAT and related C2

system for the purposes of simulating Advanced Persistent Threat (APT) attacks

during security audits. The system, a set of tools collectively called HAGRAT,

is a clean-slate in-house development. As such, it is backdoor-free and not read-

ily identifiable by Anti-Malware and Intrusion Detection tools as it has not been

indiscriminately distributed. The target RAT is remarkable for its compact size

and advanced stealth features such as encryption and WinINet (HTTP) proxy and

firewall tunneling. We discuss the design requirements, implementation and the

actual the effort required to develop such software.

Keywords: Targeted Attacks, Remote Access Trojans, Command and Control, Pene-

tration Testing, HAGRAT.

1 Introduction

During the last decade information security threats have evolved from indiscriminate

virus outbreaks and random opportunity hacks towards more organized and customized

exploitation [1].

The most popular attack vector in targeted attacks is a specially crated e-mail that

carries malware payload, called Spear Phishing (Figure 1) [2, 3]. The payload may uti-

lize a security vulnerability on the target system to execute itself (PDF vulnerabilities

having been specially popular), or simply trick the target into executing it [4].

⋆ The development work reported in this paper was performed between March and May 2013

when the author was under contract with HELP AG Middle East, Dubai, UAE.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

13 / 139 GreHack

 Attack Operator Identified Target User

 From: boss@my.org

 Subject: Mucho Importante!

hagr4t.pdf

Forged e-mail that drops the RAT

Fig. 1. Spear Phishing is based on specially crafted forged e-mails that carry malware.

1.1 Compliancy is not Enough

It has been observed that threats of this type are not adequately addressed with standard

information security best practices. To illustrate this point, we observe where some of

the key controls specified in the Payment Card Industry (PCI) Data Security Standard

(DSS) [5] fail against targeted and persistent attacks:

– Firewalls (PCI DSS Req. 1) The attacks are not based on scanning the targets

from the Internet; instead a malicious payload is dropped on the target which then

establishes a surreptitious outbound connection to a Command and Control service.

– Anti-virus software (PCI DSS Req. 5) The attackers can customize their attack

tools for the target in order to avoid detection by general-purpose anti-malware

software.

– Keeping systems up-to-date (PCI DSS Req. 6) After an initial entry vector has

been found, perhaps via social engineering, APT operatives maintain a persistent

presence at the target systems and hence further exploitation is not necessary. Sys-

tems remain vulnerable despite updates.

– Vulnerability scans (PCI DSS Req. 11) Penetration testing and vulnerability as-

sessment are some the most effective methods for closing down holes in systems

and applications. However, vulnerability scanners only find known security vulner-

abilities and are not helpful against social engineering or custom payload insertion.

1.2 Simulating APT in a Security Audit

The security industry often categorizes targeted, organized and customized attacks as

Advanced Persistent Threats (APTs) [1, 6].

Following the well-known philosophy of “Improving the Security of a Site by Break-

ing Into It” [7], an organization may wish to test its readiness for ATP threats by asking

a trusted external party to simulate such an attack as a Red Team.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

14 / 139 GreHack

The U.S. security consultancy Mandiant and others generally recognize the follow-

ing steps in the lifecycle of an ATP attack with long-term objectives (steps adopted from

Appendix B of [3]):

1. Initial Compromise. The initial intrusion methods tend to be at least partly based

on social engineering such as Spear Phishing where tailored messaging is used

to activate malicious payload on target. Even physical access to target premises

(“walking or talking oneself to the office”) can be an effective option.

2. Establish Foothold. Foothold is established via RATs (Remote Access Tools / Tro-

jans) or other persistent software that is operated via an outbound connection, typ-

ically to a custom Command & Control infrastructure.

3. Escalate Privileges. The operator aims to further her access by examining the con-

figuration or via basic hacking techniques such as exploiting local password weak-

nesses or sniffing the network or keyboard for passwords.

4. Internal Reconnaissance. Mapping of the target infrastructure; services and servers,

tunnels, proxies etc. Standard system commands may be augmented with uploaded

custom mapping tools.

5. Move Laterally. Move closer to “targets of interest” by using stolen credentials or

other similar information to further internal access.

6. Maintain Presence. Via installation of varied low-level back-doors or even entirely

new attacker-controlled user accounts.

7. Complete Mission. Get the “loot” data out of the target environment. Clean up all

traces of intrusion, if possible.

With careful planning and by using trusted tools such as the one described in this

paper, the operational risks of such exercises can be minimized even in live production

environments.

1.3 Tools for APT Security Audit

Tools used for such intrusions can be roughly divided into Reconnaissance, Presence

Maintenance and Mission Completion tools (Appendix C of [3]). The work described

in this paper falls into the latter two categories.

In a way, the HAGRAT target payload serves a similar purpose to the Meterpreter

payload of the popular Metasploit framework [8, 9]. However, Meterpreter lacks C2

functionality and is recognized by many anti-malware tools. However, Metasploit and

the related Social-Engineer Toolkit (SET) [10] can be used for insertion of HAGRAT

payload.

Even government-linked operatives are known to have used tools that originate from

underworld sources, such as the Poison Ivy and Gh0st RATs and various Exploit toolk-

its [3]. However there are inherent risks in using such tools against friendly targets as it

is possible that hidden functionality exists in such software even if “full” source code is

obtainable.

In a recent 2013 case, Paul Rascagnéres and others from malware.lu used infor-

mation provided in the Mandiant APT1 report [3] and scanned for the APT1 Poison

Ivy command network [11]. Using a well-known remote code execution security flaw

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

15 / 139 GreHack

in the Poison Ivy C2 (Andrzej Dereszowski 2010 [12]), and an ingeniously decrypted

access password, the analysts hacked the APT1 command infrastructure, apparently ran

by Chinese agents. This lead to discovery of active targets and additional malware tools

used by the malicious party.

Often the source code of these tools is of poor quality, poorly documented (or solely

in Russian) and essentially unauditable – we have examined the leaked source codes of

Carberp, Zeus, UrSnif, and Citadel malware families [13] and found this to be the

case. The Poison Ivy vulnerability [12] was found by fuzzing and therefore source code

was not needed.

There are inherent reliability and legal issues in using black market software for

commercial penetration exercises. Note that our own binary executable does not make

any special attempt to hide its origin or purpose as it contains relevant Copyright strings

and is intended solely for legitimate use at the request of the organization itself.

For security audit purposes, a clean-slate target RAT is not only safer, but it is also

less likely to be detected by anti-malware tools as it has never been used indiscrimi-

nately. The RAT can be tailored for a specific target, operation, or exercise.

2 Requirement Specification

After initial discussions with Help AG Security analysts 1, the main initial requirements

for the tool were identified as:

1. Command-line access. Allows the operator to examine the target system and files

contained therein.

2. Remote program execution. Facilitate operation of “plugin” tools on target system

for additional functionality.

3. Targeted Binaries. Encoding mechanism for C2 server address, persistence mech-

anism, and other configuration information into the RAT binary executable itself.

4. File Transfer. File upload / download from the operator system via C2 without

additional tools or services.

5. A Control Terminal. An intuitive remote control operator interface that connects

to the C2 component from a remote location.

6. Communications Security. Strong encryption and authentication of all traffic. The

protocol should not be readily identifiable by packet sniffers and network analyzers.

7. Firewall Penetration. HTTP control channel with the Windows system Proxy set-

tings and credentials in order to effectively penetrate through firewalls.

8. Alerts. System can be configured to issue an alert message such as an e-mail when

a specific RAT becomes active and the target system can be accessed.

9. Automation. Script system that allows automatic intelligence gathering from target

systems.

10. Limited Persistence. A persistence mechanism and an automatic “self-destruct”

feature which erases the RAT from the target system after a specified date.

1 Help AG is a Dubai-based security consultancy, http://www.helpag.com

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

16 / 139 GreHack

 Operator

(hrterm)

Target

(hagr4t.exe)

Firewall

C&C Server

(hrccd)

Outbound HTTP

Control

Control

Protocol

Target

(hagr4t.exe)

Fig. 2. HAGRAT Command and Control (C2) infrastructure. Upon execution the RAT at target

will connect to the C&C server through an outbound encrypted HTTP connection. The Operator-

controlled C&C server will respond back with instructions and data.

The requirements above were seen as the core RAT functionality. Additional exe-

cutable components for e-mail access, credential stealing, keyboard and network sniff-

ing, remote desktop etc, can be uploaded and activated after sufficient intelligence is

gathered by the operator.

2.1 Technical Choices

It was agreed that the target binary should be a stand-alone executable runnable on

Windows XP, Windows 7, and Windows 8 targets. The server-side development would

be on a Linux platform. This selection was based on the observation that these servers

are Internet-facing and should be fully controllable via the command line.

No specific evasion or insertion mechanisms were specified for the RAT component

as these are to be dynamically created, depending on the target. However, the small

executable size allows insertion of our RAT as a payload using a wide spectrum of

insertion vectors (unlike some targeted tools which measure in megabytes [14]).

3 Architecture and Components

The system has a highly configurable client-server architecture. A single server can

manage any number of RAT instances.

Figure 2 shows the basic HAGRAT infrastructure. After the RAT payload has been

inserted on target and executes, it establishes an authenticated outbound HTTP connec-

tion through firewall to the C2 server. The operator can then interact with the target

through HTTP replies.

From implementation viewpoint, the system consists of seven binary executables:

1. hagr4t.exe is a small Windows executable that allows remote control of the target

system by contacting the C2 server.

2. hrccd (HR Command and Control Daemon) manages multiple simultaneous en-

crypted connections.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

17 / 139 GreHack

3. hrterm is a terminal control interface that allows an operator to control target RAT

instances through hrccd.

4. hrhts (HR HTTP Tunneling Server) implements HTTP tunneling in the server end.

The following two components fulfill internal tasks at the server end:

5. hrcomm works in the server to pair a terminal session with the desired target sys-

tem via UNIX domain sockets.

6. hrxfer is a helper utility that allows server-side target intelligence gathering and

initialization scripts to exchange files with a RAT target.

Furthermore there is an auxiliary utility:

7. hardcode Allows insertion of configuration strings and other targeting information

into a compiled hagr4t.exe binary.

3.1 Development Process

The small RAT component (1) is primarily targeted to Windows XP and Windows 7/8

systems. This executable is only about 12 kB in size, yet does not require any special

auxiliary components or libraries. This has been achieved by linking it with a cus-

tomized minicrt.lib runtime library rather than the bloated standard CRT files.

All components have been written in standard ANSI C to facilitate portability and

maintenance. Free Microsoft Visual Studio 2012 Express for Windows Desktop (Ver-

sion 11.0.51106.01 Update 1) was used to create and compile hagr4t.exe.

The server-side components (2-6) would typically reside on a Linux system. How-

ever, they can be trivially ported to other Linux-like platforms and also to Windows

via the cygwin compatibility layer. In addition to standard libc runtime components,

ncurses5 and/or terminfo development libraries are used.

Installation is easy on arbitrary UNIX systems for which compilation tools and a

command line interface exist. Virtually any cloud or bulletproof hosting provider would

do. Root-level permissions are only required if a privileged port (such as 80) are used. It

is therefore easy to hide C2 components on compromised UNIX hosts inside the target

network, if necessary.

3.2 Secure Communications: BLINKER and CBEAM

For a secure communications protocol we decided to avoid the SSL protocol as it leaks

quite a bit of signature information during handshake and requires a cumbersome certifi-

cate set-up. Furthermore antivirus and anti-malware software may hook the SSL system

calls and obtain access to plaintext that way. Operating system security services were

only used as a PRNG source for generation of session keys.

Instead we opted for a lightweight handshake protocol based on symmetric ci-

phers and fast set-up, called BLINKER [15]. Authentication is based on high-entropy

shared secrets and randomized challenge-response mechanism. BLINKER is signifi-

cantly faster than SSL to set up and we are able to run it over a pure HTTP (port

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

18 / 139 GreHack

80) tunnel, thereby enabling secure communications even when a firewall detects and

blocks HTTPS.

The project gave the author a suitable opportunity to field a variant of experimental

authenticated encryption algorithm CBEAM [16]. Note that the encryption algorithm is

rarely the weak spot in a system such as this one. It is very telling that the FLAME [14]

intelligence gathering malware used five different weak ad hoc encryptors.

The CBEAM and BLINKER source code (530 lines) is shared between the Win-

dows component hagr4t.exe and the Linux server component hrccd.

3.3 Windows Codebase

Only about 1000 lines of code were required for basic RAT footholding functional-

ity, including encryption, client-side HTTP tunneling, proxy authentication, and file

transfer functions. The Windows side may require multiple processes to run (one for

CMD.EXE, and another for HTTP tunnel etc); the interprocess communication is han-

dled with local stream sockets (equivalent to TCP) as this was found to be the most

reliable and portable method across Windows variants.

3.4 Server Codebase

The code specific to server side operations is about 1840 lines. Various functions are

grouped together into five separate C files. By default a singular configuration file

hrsecret.cfg is used to store all authentication credentials (for RATs and Termi-

nals alike) and various automation and alert rules.

The server side is designed to be run as user-space processes. However it may be

necessary to invoke hrhts as root if one wants it to answer to privileged HTTP port

80. The interprocess communication between hrccd and hrconn is handled via pipes

and environment variables; the hrconn instances talk to each other via UNIX domain

sockets in /tmp.

3.5 Parameter Encoding

The number of supplied parameters defines the mode of operation of hagr4t.exe. There
are five variations depending on desired functionality:

hagr4t [f] <port>:<url>

hagr4t [f] <host> <port>

hagr4t [f] <url> <id> <key> [date]

hagr4t [f] <host> <port> <id> <key> [date]

hagr4t [f] <host> <port> <id> <key> <date> <host:port>

The variants enable plain HTTP tunneling, a plaintext TCP outbound shell, a HTTP

tunneled encrypted command channel, direct TCP outbound encrypted command chan-

nel, and optional specification of kill dates and HTTP proxies. Normally operating sys-

tem / Internet Explorer configuration is used for Proxies and Proxy credentials.

The hardcode utility allows embedding of command line parameters so that they

do not have to be encapsulated in a script on target platform. The encoding tool itself

is simple (40 lines) as its only function is to insert a null-terminated parameter set from

the command line to the appropriate position inside the hagr4t.exe binary.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

19 / 139 GreHack

3.6 Firewall Penetration with HTTP Tunneling

Many of our targets employ tight firewall configurations that do not allow direct TCP

connections to the outside. Furthermore http proxies may be configured to limit the

range of accessible secure hosts.
We found that the best solution for outward penetration of firewalls is to use the

wininet.dll library [17]. Using this method, we are able to use the Internet Ex-
plorer proxy configuration and even authentication credentials via certain options in the
InternetErrorErrorDlg() system call:

err = InternetErrorDlg(GetDesktopWindow(), hreq,

ERROR_INTERNET_INCORRECT_PASSWORD,

FLAGS_ERROR_UI_FILTER_FOR_ERRORS |

FLAGS_ERROR_UI_FLAGS_GENERATE_DATA |

FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS, NULL);

Proxy credentials are stored in an inconspicuous location in the system registry for

further reference. Binary communications are then wrapped into HTTP 1.1 persistent

connections where two-way communication can be performed with the POST method.
The hagr4t.exe client sends data as follows to hrhts at 172.16.109.1, port 80:

POST / HTTP/1.1

User-Agent: Mozilla/5.0 (copied from IE)

Host: 172.16.109.1:80

Content-Length: 137

Connection: Keep-Alive

Cache-Control: no-cache

Data: 09 A2 8B 18 4D 3C .. (total 137 bytes of data)

The hrhts responds with data within the 200 OK message:

HTTP/1.1 200 OK

Content-Length: 6

Connection: Keep-Alive

Data: 09 48 0B 52 B4 F8

Since communication of this type is essentially half-duplex, a flow control mecha-

nism had to be implemented. We used a method where flow is controlled by the server

(hence giving an operator instant feedback), with exponentially increasing delay up to

500 milliseconds.

3.7 Work Required

The entire project is about 3500 lines of code and configuration and does not use any

nonstandard libraries (the encryption code is built-in). A total of 264 man-hours were

billed for the work during a period of about 10 weeks. This included all development,

research and documentation work from scratch. This metric is indicative of the general

difficulty of development (“start-up costs”) of new families of such targeted attacks.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

20 / 139 GreHack

Fig. 3. In this screenshot the hrccd startup and successful connection and authentication by both

hagr4t.exe and hrterm control terminal to the C2 are displayed together with the hrsecret.cfg

file.

Comparison. Ukrainian newspaper sources indicate that the “carberp” botnet creation

kits were coded by a loose group of at least twenty individuals [13, 18].

We have analyzed the Carberp, Zeus, UrSnif, and Citadel malware kits and found

these to be of largely non-professional quality. The codebase may appear to be large

but much of this consists of customization such as bank-specific injectors. Examined

trojans tend to have an appearance of a “hack” in the bad sense of the word.

4 Example of Usage

Under byobu persistent text window manager, we first launch hrccd at the server sys-
tem 172.16.109.1. TCP port 17409 is used by default. A screenshot of hrccd is provided
in Figure 3.

$./hrccd

hrccd v1.130600 (c) Help AG FZ LLC ** CONFIDENTIAL **
05:26:19.345 [12049] all:all starting listener at port 17409

The C2 system was fielded on a Amazon Web Services Ubuntu Microinstance. We

will be using the HTTP tunnel hrhts in our example. Note that it is safe to have hrhts

running in arbitrary external hosts to masquerade the true location of the C2 system as

a hrhts installation does not require storage of client or server secrets – it is simply

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

21 / 139 GreHack

Fig. 4. In this screenshot the hrterm utility is invoked to contact hrccd (a HAGRAT server) which

happens to be running on the same system. Upon connection, hrconn asks the operator to choose

from a list of RAT instances; there is only one available.

translating from HTTP to TCP and back. A loss of a hrhts forwarding node has little

impact on the C2 network.

We launch hrhts in verbose mode to complete the initialization of the server side:

$./hrhts 80 127.0.0.1 17409 verb

HRHTS: I am at port 80, destination is 127.0.0.1:17409.

On the the target Windows 7 host 172.16.109.129, hagr4t.exe is invoked with command
line parameters that specify that a HTTP communications channel should be used to
172.16.109.1, port 80. Authentication to C2 is done with identifier ”win7test” and with
secret ”0SDYNIKHG3PPVU40D0RNCA3AT”.

> hagr4t

http://172.16.109.1:80 win7test 0SDYNIKHG3PPVU40D0RNCA3AT

Now the operator may connect to the Command and Control system with hrterm and

choose the target system. Note that hrterm requires its own set of credentials.

A screenshot of this is provided in Figure 4. The operator proceeds to download

the hagr4t.exe file from the execution directory using the !get command (HAGRAT

commands are prefixed with the exclamation mark “!”).

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

22 / 139 GreHack

5 Future Projections and Work

Cyber-espionage is, by far, the most cost-effective and method of obtaining protected

information, while carrying the lowest political or legal risk. We estimate that the cur-

rent generation of trojans will continue to explosively progress in sophistication in im-

mediate future (2014-2015) as more resources become available for development.

As for the development of HAGRAT, we will add polymorphism and more advanced

code update methods. Experiences with APT1 attacks have showed that renewed cam-

paigns seem to be possible with only minor tweaks to the attack payloads [4].

We do not feel that wider dissemination of the HAGRAT source code would serve

any useful purpose. However we have discovered that even rather modest resources

enable development of effective cybermunitions as there are very few actual “secrets”

needed for this work. The start-up costs are minimal.

6 Conclusions

We have described development of a Grey Hat tool to simulate Advanced Persistent

Threats in penetration testing. Development of such a tool is necessary as most current

tools come from underworld sources and have bugs and backdoors in addition to be-

ing detectable by anti-malware software. Development of experimental software of this

type also sheds light on the resources required, which appear to be fairly small.

Tools readily exist for network mapping and reconnaissance, vulnerability scanning,

and other network-side security analysis. Instead we concentrated on footholding and

persistence enablers such as Remote Access Trojans/Tools (RATs), which are the sig-

nature element of Advanced Persistent Threats (APTs). We found that development of

such tools does not have to rely on extensive “hacking tricks”. Correct use of operating

system calls and clean programming practices are usually preferable in order to avoid

detection. We found that creating HTTP-encapsulated outbound traffic with the POST

method using the standard WinInet library (and proxy settings) penetrates most firewalls

very efficiently as it appears indistinguishable from normal web browsing activity.

As evidenced by leaked trojan source codes and reverse engineering, opportunistic

underground hackers tend to be relatively inexperienced and undisciplined in software

development. Any seasoned software developer with experience in low-level system

programming is equally, if not better, equipped to develop tools that are useful in Ad-

vanced Persistent Threat (APT) simulation for Security Audits. The relevant require-

ment of these systems is not in 0-day exploits as foothold is often achieved via social

engineering, but in effective communication protocols and reliability.

It seems obvious that even organizations with limited resources are able to indige-

nously develop sophisticated cybermunitions in the current Internet environment. As

the Grey Hat market for such software components increases, we can expect their com-

plexity to grow exponentially as more professional non-underground developers, bigger

development teams and budgets become available.

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

23 / 139 GreHack

References

1. Bodmer, S., Kilger, M., Carpenter, G., Jones, J.: Reverse Deception: Organized Cyber Threat

Counter-Exploitation. McGraw-Hill (2012)

2. TrendLabs: Spear-phishing email: Most favored APT attack bait. Trend Micro Inc Report

(2012)

3. Mandiant: APT1 – exposing one of china’s cyber espionage units. Mandiant Intelligence

Center Report (February 2013)

4. Guarnieri, C.: Upcoming G20 summit fuels espionage operations. Rapid7 Security Street

Blog (August 26, 2013)

5. PCI: Payment Card Industry (PCI) Data Security Standard - Requirements and Security

Assessment Procedures, Version 2.0. (October 2010)

6. Hutchins, E.M., Clopperty, M.J., Amin, R.M.: Intelligence-driven computer network defense

informed by analysis of adversary campaigns and intrusion kill chains. In Armistead, E.L.,

ed.: Proceedings of the 6th International Conference on Information Warfare and Security,

Academic Conferences Limited (March 2011) 113–125

7. Farmer, D., Venema, W.: Improving the security of your site by breaking into it (December

1993)

8. Moore, H., Rapid7: Metasploit framework. http://www.metasploit.com/

9. Kennedy, D., O’Gorman, J., Kearns, D., Aharoni, M.: Metasploit: The Penetration Tester’s

Guide. No Starch Press (2011)

10. TrustedSec: Social-engineer toolkit (SET). https://www.trustedsec.com/

downloads/social-engineer-toolkit/

11. Rascagnéres, P.: APT1: Technical backstage. Presentation HITCON, Taiwan (July 2013)

12. Dereszowski, A.: Targeted attacks: From being a victim to counter attacking. Black Hat

Europe 2010 (March 2010)

13. Krebs, B.: Carberp code leak stokes copycat fears. http://krebsonsecurity.com/

2013/06/carberp-code-leak-stokes-copycat-fears/ (June 27, 2013)

14. sKyWIper Analysis Team: sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex malware for

targeted attacks (May 2012) http://www.crysys.hu/skywiper/skywiper.pdf.

15. Saarinen, M.J.O.: Beyond modes: Building a secure record protocol from a cryptographic

sponge permutation. Submitted for publication. (September 2013)

16. Saarinen, M.J.O.: CBEAM: Efficient authenticated encryption from feebly one-way phi

functions. Submitted for publication. (September 2013)

17. Microsoft: WinINet reference. http://msdn.microsoft.com/en-us/library/

windows/desktop/aa385483(v=vs.85).aspx (October 2012)

18. Ryabchun, J.: A group of hackers neutralized (April 2, 2013) In Russian: http://www.

kommersant.ua/doc/2160535.

Version 20131008214200

Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and

Assessment GreHack 2013, Grenoble, France

24 / 139 GreHack

	Accepted Papers
	Markku-Juhani Olavi Saarinen/ Developing a Grey Hat C2 and RAT for APT Security Training and Assessment
	Markku-Juhani Olavi Saarinen
	Developing a Grey Hat C2 and RAT for APT Security Training and Assessment

