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Abstract. With huge amounts of new Android applications released
every day, in dozens of di�erent marketplaces, Android malware un for-
tunately have no di�culty to sneak in and silently spread, and put a
high pressure on antivirus teams. To try and spot them more easily, we
built an infrastructure, named SherlockDroid, whose goal is to �lte r out
the mass of applications and only keep those which are the most likely
to be malicious for future inspection by anti-virus teams. Sherlo ckDroid
is made of marketplace crawlers, code-level property extractors and a
data mining software which decides whether the sample looks malicious
or not. This data mining part is named Alligator , and is the main focus
of the paper. Alligator classi�es samples using clustering techniques. It
�rst relies on a learning phase that determines the intermediate s cores to
apply to clustering algorithms of Alligator. Second, an operati onal phase
classi�es new samples using previously selected algorithms and scores.
Alligator has been trained over an extensive set of both genuine Android
applications and known malware. Then, it was tested for proacti veness,
over new and more recent applications. The results are very encouraging
and demonstrate the e�ciency of this �rst heuristics engine for e �ciently
pre-�ltering Android malware.

Keywords: Malware, Mobile phone, Android, Heuristics, Cluster, Fil-
ter;

1 Introduction

Once scarce - perhaps even spooky - malicious Android applications havenow
become a sad reality. There are over 200,000 malicious Android samples in June
2013, and approximately 1,000 new samples are reported every single day[2].
The di�culty lies in spotting them in the middle of the enormous bu nch of
legitimate applications: 800,000 applications for Google Play alone [13]. The
experience just sounds like �nding a needle in a haystack...

Currently, Android malware are only sporadically found in marketplaces
when researchers/engineers manually seek given applications, or by customer
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input and malware exchange sharing with other anti-virus vendors (seeleft part
of Figure 1). This means that most malware remain undetected in marketplaces
for a long time. A possibility to automate the process is �rst to scan all ap-
plications by an anti-virus engine so as to quickly detect known malware and
their variants. But then, there is still a huge volume of remaining samples (clean
or undetected malware) that are impossible to manually analyze by anti-virus
teams.
A way to break down that huge volume into a much smaller subset is to rely on
automated tools to pre-�lter Android applications in marketplaces. In p ractice,
of course, the subset will probably also contain a few clean samples and afew
variants of known samples which were undetected by the AV scanner.Those
samples are �nally inspected by AV analysts or researchers (see rightpart of
Figure 1) and threats can be raised if necessary (hot bulletins, advisories, con-
ference papers, . . . ).
Since the subset is manually inspected, it is consequently veryimportant to keep
its size down. A tight �lter results in ignoring some malware. A loose �lter re-
sults in having far too many samples to analyze, which actually also equals to
ignoring plenty of malware (those AV teams don't have time to analyze). Asthe
very idea of �ltering is about setting priorities on samples, we prefer the lesser
of two evils: tight �ltering .

At EICAR 2012, an initial pre-�lterering framework was presented [4], to
start tackling this issue. It consisted of a Google Play crawler and aheuristics
engine based on various properties found in the sample (presence of code send-
ing an SMS, use of rooting exploits etc). Each property was given an empirical
weight, and at the end an empirical threshold was set to �lter in or out. Al -
though empirical decisions are suitable for early prototypes, they quickly reach
their limits on full scale systems. This paper enhances the framework with data
mining. Actually, our contribution is twofold.

1. First, the design and implementation of clustering techniques speci�-
cally adapted to populations of mobile malware . We rely on state of
the art clustering algorithms and adapt them to the �ltering framework . No-
tably, we also design an original learning phase which automatically learns
the best con�guration. Contrary to usual learning phases, ours combinespa-
rameters for several clustering algorithms, not a single one (sections3 and
4).

2. Second, the evaluation of our overall approach overlarge sets of Android
applications .

The paper is organized as follows. First, we explain the overall architecture of
our pre-�ltering system (section 2), christened SherlockDroidafter its ability to
inspect clues. SherlockDroid can be seen as an improved and more mature version
of the heuristics engine published in [4]. Then, we explain how wedesigned and
integrated a free software clustering system for Android sample pre-�ltering.
This clustering tool is named Alligator [5]. It has been speci�cally tuned for
SherlockDroid, though it could be re-used for other purposes. We quickly present
the clustering algorithms it supports (section 3), and then explain its learning
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onto the list of samples to partition (called guess cluster). Alligator runs each
clustering algorithms indicated in the script, with the appropriat e weights,
and outputs for each sample two scores: a score of resemblance to regular
samples, and a score of resemblance to malware samples. The higher the ma-
licious is, the more malicious the sample is. If the malicious score ishigher
than the regular score, the sample is declared as suspicious. It ends up for
manual analysis (see Figure 1).

The rest of the paper is dedicated to Alligator, and the overall resultsof
SherlockDroid.

3 Clustering techniques of Alligator

Alligator is a lightweight, highly focused clustering tool, implemented in a few
thousands of Java code lines. It is piloted by easily understandablescripts. Its
comparison with other clustering tools is provided in section 6.

3.1 Classifying guess samples

Alligator takes as assumption that two main clustersR and M have been already
settled with "known" elements. In our case, cluster R holds regular samples
(legitimate) and M holds malicious ones. The main purpose of Alligator is to
classify unclassi�ed samples, i.e. samples currently part of a cluster named the
"guess" cluster G, into either R or M . Each element - also calledsamples- of
R, M and G have been given a value for each propertyp of a set of properties
P. The decision to put a sampleg 2 G in R or M thus depends on the value of
eachp 2 P for g, and also depends on the various values of samples ofR and M
for the same setP of properties.
Finally, a clustering algorithm takes as input a sample g of G, two clusters R
and M and returns the score ofg for each clusterR and M .

3.2 Clustering algorithms

We now quickly review the clustering algorithms implemented inAlligator for the
guessing phase. Some of them are quite well known (e.g., deviation, correlation),
therefore, our focus is rather to discuss the main reasons why we think they
could be interesting in the scope of malware identi�cation (see also section 3.3).

{ Standard deviation . Well known metric for computing the distance be-
tween a given sampleg 2 G and the average of clusterR and M for each
property. The smallest this distance is with a given cluster center, the better
is the chance to be part of that cluster.
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{ Probability di�erence . The score is based on the percentage of "typical"
values that are respected inR and M . "Typical" is de�ned by a given prob-
ability di�erence di� : proba1 > di� + proba2. For example, let's assume that
the probability of property #6: "send SMS" to be equal to "1" is 0:8 in clus-
ter M and equal to 0:2 in cluster R, and the probability di�erence di� = 0 :5:
We say that "1" is a typical value of cluster M for property "send SMS" be-
cause 0:8 > 0:2 + 0:5. Thus, if the value of property 6 of g is = 1, then g
"respects" one typical value of ofM .
Finally, the more typical values g respects for a cluster, the more chanceg
has to be part of it.

{ Probability factor . Same as "Probabiblity di�erence" except typical values
are computed using a multiplicative di�erence: fact: proba1 > fact � proba2.

{ Proximity , aka k-Nearest Neighbours (k-NN). Based on the usual distance
relation, the algorithm takes as input the number of n of nearest neighbours
of g. Then, the score ofg for R (resp. M ) corresponds to the percentage
of elements ofR (resp. M ) that are in this set of closest neighbours. Thus,
contrary to the standard deviation that targets the distance with the cen-
ters of the two R and M clusters, the proximity cares only with the closest
elements of each clustersR and M .

{ Proximity with limited properties . Same as "Proximity", but we only
consider the smallest distances. Thus, two samples which are veryclose -
if not equal - on most properties, but very far with only one property, are
classi�ed as very distant with "proximity", but very close with "pro ximity
with limited properties".

{ Correlation . Alligator �rst identi�es correlations between di�erent proper-
ties within a given cluster. For instance, Alligator could show that properties
"send SMS" and "Internet access" are correlated for malware, but not for
regular. Then, Alligator computes for each g a score according to correla-
tions g matches within M and R.

{ Epsilon clusters . In epsilon clusters, samples are grouped according to a
minimal distance � . A sample s is added to a given epsilon cluster if and
only if there exists one sample in this cluster so that the distancebetween
that sample and s is less than � (see Figure 3). Epsilon clusters are useful
to create sub-groups ofR and M for each g of the guess cluster, and then
�gure out the proportion of elements of R and M in that group. Thus, the
more elements ofR (resp. M ) in the sub-group of g, the more chance hasg
to be an element ofR (resp. M ).
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Fig. 3. Notion of epsilon cluster. The epsilon cluster of this example contains three
elements. Another element is not in that cluster since its di stance with any element of
the cluster is greater or equal to epsilon

3.3 Discussion on clustering algorithms

Clustering algorithms of Alligator provide di�erent techniques for c lassifying
samples. Algorithms have been selected for their variety in distances: sometimes,
it is based on the center of clusters (e.g., deviation, probability), or on the
neighbourhood(e.g., proximity, epsilon cluster). Algorithms also di�er in thei r
criteria for computing distances (probabilities, � -path, etc.). But the selection
of which algorithms are really relevant for e�ciently classifying a set of samples
is however not an easy task. By "selection", we mean which importance (or
weight) should we give to each clustering algorithm. A zero-weight means that
the algorithm is useless, a weight greater than zero means that the algorithm is
relevant. Two approaches can be used to determine weights:

{ Review contributions on malware classi�cation and results on clustering tech-
niques, and empirically de�ne weights for each algorithm.

{ De�ne an automatic weight computation for each algorithm. This is the
option we have taken: we have de�ned and implemented a learning phase in
Alligator. This phase is more thoroughly explained in next section.

4 The learning phase of Alligator

As we said previously, selecting clustering algorithms is not so easyin practice.
So, to overcome this di�culty, Alligator o�ers an easy-to-use learning phase
where a human-readable learning script helps selecting the bestcombination of
algorithms to use.

4.1 Learning phase: general approach

The learning phase works as follows.

1. Already classi�ed samples are put either in clusterR or M . Other samples
are put in G.

2. A set S of algorithms - and their respective parameters - is selected. For
example, "probability di�erence with di� = 0 :8", "proximity of 25 samples
limited to 50 properties", etc.
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3. The Alligator learning phase determines - usinglearning algorithms - the
best weight to give to each set of algorithm/parameters so as to maximize
the samples ofR and M that are classi�ed in their corresponding cluster
when applying algorithms/parameters of S. Said di�erently, the scoring for
a sample ofR should be higher for clusterR than for cluster M , and the
opposite for samples ofM .

Once the learning phase has determined all weights of algorithms, then, Alligator
can be used in its operational phase (i.e., the guessing mode) in orderto classify
samples ofG.

4.2 Goal of learning algorithms

In Alligator learning, a weight is cut into two parts:

{ A user-de�ned 
oat expression expr that takes as argument a 
oat and re-
turns a new 
oat. Usual operations (+, � , � , =) and parenthesis can be used
to de�ne an expressionexpr.

{ A multiplier m to be applied on the result given by the user-de�ned expres-
sion.

Thus, weight(x) = expr(x) � m.
Alligator's learning phase intends to automatically determinem. Since one weight
is de�ned for each algorithm and for each cluster (regular, malware), the range
of possiblem values is large. The learning script can be used to restrict all pos-
sible intervals of m for each clustering algorithm, and for each clusterR and M .
For example, the following subscript con�gures the possible valuesof m for the
score on standard deviation:expr = x2 is provided for each cluster, and a range
for m = [0 : : : 1000] is provided also for each clusterR and M , with a step of
5. This range means that all values in interval 0::1000 with a step of 5 shall be
considered by Alligator in learning mode for that speci�c algorithm

setComplexWeight r e g u l a r 0 � 1000 ,5 x� x
setComplexWeight malware 0 � 1000 ,5 x� x
compute d e v i a t i o n

The goal of learning algorithms is to determine the best sets ofm for each
algorithm, for each cluster. "Best" means that we try to optimize the percentage
of elements ofR and M that are correctly classi�ed with the set of multipliers
m. For example, in the case of the previous script, Alligator determinedthat
m = 10 for regular, and m = 350 for malware. In that case, the learning phase
would generate the following script, to be used in guessing mode:

setComplexWeight r e g u l a r 10 x � x
setComplexWeight malware 350 x� x
compute d e v i a t i o n
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4.3 Learning algorithms

We now explain the basics of learning algorithms meant to determine the mul-
tipliers m.

{ Random tests random multipliers within their possible ranges, and for a
given time.

{ BruteForce parses all multipliers combinations. This algorithm is to be
used when the set of all combinations is of reasonable size. We have im-
plemented this algorithm in two di�erent ways. In the �rst one, a t ree of
all combinations is �rst built: each leaf represents one possible combination.
Then, each leaf is considered one after the other. The second implementation
considers various combinations while the tree is being built and destroyed
("on-the-
y" approach).

{ OneOtherAverage . Of all multipliers which have a range speci�ed, the
algorithm starts working on the �rst one, and sets all other ranges to their
average value. When the algorithm has found the best value for the �rst
variation, it memorizes the value. Then, it works on the second range. The
�rst range is set to the best value, all others are set to average. And so on.
This algorithm has the drawback of not taking into account the correlation
between multipliers, that is, for a given algorithm, only the multip lier of R
or M is explored at a time.

{ TwoOtherAverage . Same asoneOtherAverageexcept the algorithm works
simultaneously on two multiplier ranges at a time. The others are set to the
average value, or to the best value that was previously identi�ed. Since the
combinations are much larger than inoneOtherAverage, this algorithm takes
much longer to complete. But it can explore at the same time the best mul-
tipliers for R and M for a given clustering algorithm.

{ Combination of learning algorithms . random and oneOtherAverage(or
twoOtherAverage) can easily be combined. For examplerandom is �rst used
for a given duration to de�ne a �rst set of best values for each multipli er.
Then, oneOtherAverage is run using as starting values these best values,
instead of using average values. Other combinations are obviously possible.
In particular, OneOtherAveragecan be iterated several times until identi�ed
multipliers do not improve anymore the classi�cation results.

4.4 Minimizing false positive and/or negative

In our case, we are particularly concerned that Alligator does not 
ag clean
�les as suspicious, as then, anti-virus analysts would manually lose their time
inspecting them. Flagging a malicious �le as clean is obviously not desirable, but
not as critical. As said in the introduction, the main idea of our contrib ution
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is indeed to create a small subsets of applications to be manually analyzed. In
other words, false positives are more important to us than false negatives. For
Alligator, this corresponds to assigning a higher weight to correct identi�cation
within R than M . Thus, weights selected by learning algorithms can be computed
by also giving more importance to the right identi�cation of clean samples or
malware. Two parameters can be used for that purpose:

{ A relative factor f of correct identi�cation between regular and
malware .
For example, suppose we obtained correct identi�cation percentages of 99%
for R and 94% for M , and in another learning, 98% and 97%. If the factor
f = 1, regular and malware identi�cation has the same importance, and
so, the second learning is selected because the average correct identi�cation
is 97:5%. On the contrary, if f = 10, the �rst learning is selected since its
average identi�cation is 10� 99+94

11 = 98:54 whereas the average identi�cation
of the second learning is only equal to 97:64.

{ A minimum correct identi�cation rate : one rate for regular, one rate
for malware. Between two sets of weights, with one respecting the mini-
mum correct identi�cation rates, and another one not respecting them but
respecting the relative factor, the �rst one is prior.

4.5 Discussion

The learning phase is of utmost importance for correctly setting the weight of
each clustering algorithm and of each clusterR and M . The execution of this
phase takes a reasonable time when ranges and steps are well chosen. Large
ranges may �rst be selected with large steps, and then, manual selection of
smaller ranges and steps around the found values is a way to more quickly
converge to good weight values. Other optimization techniques (e.g., Pareto ap-
proaches) could be used to select weights. However, current approachis quite
simple and o�ers good results, both in term of learning time and of percentage
of correct classi�cation. The next section focuses more particularlyon learning
results.

5 Results

The e�ciency of SherlockDroid - including Alligator learning and guessing phases
- is evaluated below with recent Android applications. E�ciency is evaluated in
terms of quickness to produce results, and in terms of relevance ofthe results.
Both points are discussed hereafter.

5.1 Composition of test clusters

Alligator has been trained over real-life clusters of83,119 malicious Android
samples and8,505 clean ones (see Table 1). Those samples were downloaded
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before June 14, 2013. The guess clusters, with samples di�erent from thelearn-
ing phase, have 19,185 malicious samples and 1,104 regular ones. They were
downloaded end of June 2013.

Type of cluster Malware samples Regular samples
Learning clusters 82,985 8,299
Guess clusters 19,171 1,103
Total of samples tested 102,156 9,402

Table 1. Number of samples in our test clusters

Gathering clean samples is a di�cult problem, because it is di�cult to be
absolutely sure a sample is not malicious. We cannot trust an application to be
genuine because it appears on Google Play (as a matter of fact, several malware
are encountered on that marketplace, and others). We need to inspect code
manually, and check there is no malicious functionality, which unfortunately is
a lengthy process. As a compromise, we also populated the set with opensource
applications (e.g. Mozilla, Savannah Gnu, F-Droid), as their source code can be
inspected by the community, thus with reduced risks of being malicious. We also
added signed packaged included in the Android operating system (e.gGmail.apk,
GoogleServicesFramework.apketc.) and standard applications that ship with the
ROM of mobile phones3. So, although it would be preferable to have clusters of
approximately the same size, this was not feasible in practice. Thisis however a
point we will focus on in our future work.

5.2 Results of the learning phase

We tested Alligator's learning over our di�erent learning algorithms ( brute-
force, oneOtherAverage, twoOtherAverage, random and combinations / itera-
tions) with several parameters for each classi�cation algorithms, e.g.:

{ Proximity: closest 50, 10, 2 and 1 neighbour(s).
{ Correlations: 0.80, 0.75, 0.70, 0.60
{ Probability di�erence: 0.5, 0.2, 0.1
{ Probability factor: 10, 5, 2, 1.5, 1.2
{ Epsilon clusters: � -path of 10� 5 to 10� 1

Then, the learning phase outputs a score to use for each (algorithm, param-
eter) and for each type (clean, malware). For example, the score to applyto
(correlation; 0:80) is 414 for clean and 918 for malware.
In terms of computation time, with the \ randomonemultipass 600 20" option
(i.e., random for 600 seconds, and then 20 pass "oneOtherAverage"), the learning
phase took around14 hours on an average non dedicated host.

3 Note there has however been isolated cases of infected �rmware apps - recall Carri-
erIQ [11]
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5.3 Results of the guessing phase

In a second step, we gathered other samples, di�erent from the ones wehad used
for training, to be fair for results. The new malicious samples are more recent,
collected between June 15th and June 24th 2013. We removed any malicious
sample which was detected by a generic signature existing before June 15, 2013.
So, the set of new malicious samples contains "new unknown" malware at the
time of Alligator's learning. Using the best scripts generated by Alligator during
the learning phase,we tested Alligator over those new sets of malware
and clean �les .

The results of Alligator guesses are displayed at Table 3.

Regular Malware

Learning
Number of failed/recognized 9 / 8,290 67 / 82,918

Failure/success rates in % 0.11% 99.89% 0.08% 99.92%

Guessing
Number of failed/recognized 2 / 1,101 375 / 18,796

Failure/success rates in % 0.18% 99.81% 1.96% 98.04%
Table 3. Failure rates for Alligator's learning and guessing phases. For instance, we
have a very low rate of FP - which is our main target -, and a 98.04% p ro-activity.

On one hand, the failure rate for clean samples is really excellent: this was our
main target to reduce that rate since FP may induce extra work to AV analysts.
On the other hand, the failure rate for malware samples is also very low,which
demonstrates an interesting capability in terms of pro-activity. All igator was
able to 
ag 98.04% of malware, malware which were unknown (and undetected)
to an anti-virus scanner.

5.4 Discussion

We believe the results of Alligator are really excellent, and list below our argu-
ments.

{ Our premier goal of reducing the sheer amount of samples to in-
spect is taking shape . Using the current con�guration, our pre-�ltering
framework saves analysts from many unnecessary analysis. If 10,000 clean
samples and 1,000 undetected malware go through our pre-�ltering system,
only 10; 000� 0:18% + 1; 000� 98:04% = 1; 002 out of 11,000 remain to be
analyzed manually in the end, with only 20 malware remaining undetected
(and so, 980 malware are detected).

{ Alligator shows a high proactivity rate 98.04% . Pro-activity is the
capability of identifying new families of malware. Recall section 1: this is
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a second goal to our pre-�ltering system, as it helps researchers lookinto
new trends in cyber-criminal worlds. As an element of comparison, VB100
tests show pro-activity rates between 70% and 90% for anti-virus products
[16]. Although our pre-�ltering system is not an anti-virus engine, the �gures
indicate Alligator is performing well in this area, even on large clusters.

{ False positives are unacceptable for anti-virus scanners (complaint s,
bad press...) . However, they are an unavoidable burden for any system re-
lying on heuristics (such as DroidLysis). We have already said this previously
but it is important to repeat Alligator is not an anti-virus scanner: it act s
after samples have been scanned. Of course, future work will however be
made to minimize as much as possible failure rates for clean samples, even
if we already consider our 0:18% rate as very low.

6 Related Work

Data mining's goal is to organize large and complex sets of data. In the anti-
virus industry, it has often been used to classify PC samples [17] [18][8], or to
combine weak heuristics into stronger rules [12]. However, its use over mobile
samples is far more recent, perhaps because the growth of mobile malwareis
quite new altogether. We are aware of 4 prototypes which use data miningin
the mobile world: MADAM [10], [15], AAS [6] and Crowdroid [7].

MADAM, unlike SherlockDroid, is a behaviour-based detection engine run-
ning directly on an Android phone. It relies on the k-NearestNeighbouralgorithm
for data mining, similar to the proximity of Alligator. MADAM seems promis -
ing for a run time detection, but it obviously requires to manually i nstall the
application and use it, which prevents from automating the process.

[6] is an Android Application Sandbox to be deployed inside the marketplace
itself and to pre-scan applications. Their paper explains how to collect informa-
tion, notably how to hijack and log system calls, but does not discuss how the
�nal decision - suspicious or not - is to be made. Moreover, AAS has only been
tested against 150 clean applications and a single self-written fork bomb.

Crowdroid [7] is an interesting e�ort to dynamically monitor Android ap-
plications. A client application is deployed on the smartphones and sends pre-
processed system calls data to a remote server for data mining. Their approach
is signi�cantly di�erent from ours on several aspects. First, they send data for
analysis over the Internet which opens concerns for privacy even ifdata is "non-
personal". The use of Internet may also cost to the end-user, depending on his
mobile subscription. Second, their system relies on dynamic analysis, whereas
we have chosen to rely on static analysis only. Without entering the debate, we
have chosen the static approach for scalability and e�ciency reasons: scalability
as we need our system to process thousands of applications. E�ciency because
malware commonly expose a di�erent behaviour when run inside emulators or
sandboxes [1]. With regards to scalability, it should be noted that Crowdroid
has only yet been tested on arti�cial malware (i.e tailored for the tests) and on
a handful of real malware.
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Also related to our research, we could cite pBMDS [19] and Andromaly [14]
which are behaviour-based detection engines, like MADAM. But they do not use
data mining.

One of the closest work to ours is DroidRanger [20]. Like SherlockDroid,
DroidRanger is one of the few systems which scale and has been tested on asig-
ni�cant amount of real life applications (recall for instance that AAS has been
tested over 150 clean samples and 1 arti�cial malware, Crowdroid over 2 real
malware and a few arti�cial ones etc). DroidRanger consists in �ltering appli-
cations statically against pre-computed footprints of known malware. Then, in
a second stage, it looks for signs of attempting to dynamically load untrusted
code, using two di�erent heuristics. So, basically, the tasks of DroidRanger cor-
responds to the DroidLysis block in our architecture, except that DroidRanger
is limited to either detecting variants of known malware families or unknown
malware that dynamically load untrusted code, via the implementation of two
heuristics. To be fair, DroidRanger is quite successful at spotting malware in
that particular subset, however, by design, it is blind to other kind of malware:
malware that do not load untrusted code and are not from a known malware
family cannot be spotted. Because of those limitations, DroidRanger doesnot
need data mining. In the future, if they extend their system to consider a wider
set of possibilities (Alligator processes results from 146 di�erent heuristics) they
will necessarily face issues as those addressed by Alligator in this paper.

Finally, from a data mining point of view, several generic data-mining ap-
proaches and tools already exist, e.g. [9]. They support many clustering tech-
niques, but unfortunately su�er from several drawbacks with regards to the way
we need to use them. First, they mostly target the identi�cation of clusters: in
our case, we want to classify samples into two known base clusters (R and M ).
Second, the classi�cation usually relies onone given distance metric (e.g., Euclid-
ian, Pearson correlation, etc.) where Alligator relies onseveralalgorithms whose
importance for correct identi�cation is automatically computed in a lear ning
phase. Thus, Alligator provides strong automated help to select clustering algo-
rithms. Third, like e.g. [9], Alligator can be piloted by readable, simple scripts
and text-based databases, and runnable on any kind of desktop host. Last but
not least, Alligator has been implemented with an integrated understanding and
minimization of false positives and false negatives. In the anti-virusindustry,
this is particularly important, as as explained in section 4.4, Alligator has an
explicit criteria to favor lower false positives compared to falsenegatives.

7 Conclusion

With hundreds of new Android applications every day on marketplaces, mobile
malware have the opportunity to be silently released, cause havoc and only
be noticed several days (or months) later. This puts much pressureon anti-
virus teams to rush and classify samples as quickly as possible. To doso, the
paper proposes a pre-�ltering system which automates analysis of applications
published in Android markets. SherlockDroid e�ciently combines an Android
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application crawler, an Android application property extractor ( DroidLysis ) and
a data-mining toolkit ( Alligator ), the latter being an important contribution of
the paper.

Tests have been conducted over large sets of Android applications. Ourpre-
�ltering system signi�cantly reduces the work load for analysts: 99.8% of clean
applications are �ltered out. Alligator also seems very promising for thedetection
of new unknown malware, with a pro-activity rate measured at more than 98%.
This gives researchers far better chances of identifying new families of Android
malware, and thus warning the community. Alligator already identi�ed un known
malware, e.g. a GPS-leaking adkit [3].

We will however improve our research on several angles. First, technically, we
intend to explore new clustering and learning scripts, for instance, automatically
re�ning searches or tightening the �lter. We also intend to intro duce weights on
properties so that algorithms such as deviation do not consider each property
with equal importance. Second, on a wide scale point of view, we need to�nd
ways to collect more clean malware for training, so that the regular cluster has
a comparable size to the malware cluster. Besides theory, we have also already
started to test the entire SherlockDroid architecture over several dozens of mar-
ketplaces and intend to see in practice how many suspicious samplesget 
agged
and how many new malicious families are discovered that way.
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