
Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

3.6 Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic

Controllers

3.6.1 Eireann Leverett, Reid Wightman

3.6.2 Reid Wightman

twitter: @ReverseICS

3.6.3 Eireann Leverett

Eireann Leverett studied Artificial Intelligence and Software Engineering at Edinburgh University and went

on to get his Masters in Advanced Computer Science at Cambridge. He studied under Frank Stajano and Jon

Crowcroft in Cambridge’s computer security group. In between he worked for GE Energy for 5 years and

has just finished a six month engagement with ABB in their corporate research Dept. He now proudly joins

IOActive to focus on Smart Grid and SCADA systems.

His MPhil thesis at Cambridge was on the increasing connectivity of industrial systems to the public

internet. He focussed on finding the cheapest way to find and visualise these exposures and associated

vulnerabilities. He shared the data with ICS-CERT and other CERT teams globally, and presents regularly to

academics and government agencies on the security of industrial systems.

More importantly, he is a circus and magic enthusiast, and likes to drink beer.

@blackswanburst

3.6.4 Vulnerability Inheritance in Programmable Logic Controllers

200 Programmable Logic Controller (PLC) models from a variety of vendors rely on the same third party

library.This CodeSys Runtime library gives these controllers access to ’ladder logic’. The authors discovered

authentication bypass vulnerabilities in this library. An unauthenticated attackercould potentially upload lad-

der logic to the PLCs or halt the programs presently running. The authors subsequently performed a scan of

the complete IPv4 internet (0.0.0.0/0) to identify controllers, potentially providing access to critical infras-

tructure, and shared that data with trusted incident responders.

• Talk and paper can be downloaded from http://grehack.org

84 / 139 GreHack

http://grehack.org


Vulnerability Inheritance in Programmable

Logic Controllers

Éireann Leverett and Reid Wightman

701 5th Avenue, Suite 6850
Seattle, WA 98104

http://www.ioactive.com

Abstract. 200 Programmable Logic Controller (PLC) models from a
variety of vendors rely on the same third party library. This CodeSys
Runtime library gives the controllers access to ’ladder logic’[2]. The au-
thors discovered authentication bypass vulnerabilities in this library. An
unauthenticated attacker could potentially upload ladder logic to the
PLCs or halt the programs presently running. The authors subsequently
performed a scan of the complete IPv4 internet (0.0.0.0/0) to identify
controllers, potentially providing access to critical infrastructure, and
shared that data with trusted incident responders.

Keywords: Programmable Logic Controller, third party dependency,
IPv4/0 vulnerability scan, embedded systems, critical national infras-
tructure, industrial control systems, security, supply chain, vulnerability
inheritance, ladder logic, incident response

1 Introduction

This paper is a humble case study in industrial control systems (ICS) security.
It descibes the vulnerabilities present in a number of programmable logic con-
trollers (PLCs), and these vulnerabilities were inherited into the PLCs from the
third party library.

The paper is comprised of three basic sections:

1. Descriptions of the vulnerabilities found by Reid Wightman.

2. Analysis of a full IPv4 scan for vulnerable PLCs, and some elaboration of
working with Incident Response (IR) teams.

3. Discussion of how multiple failures to detect vulnerabliities can occur from
development, to supply chain, and finally to open deployment.

It aims to motivate further discussion of supply chain security and industrial
systems security economics.

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

85 / 139 GreHack



2 Éireann Leverett and Reid Wightman

2 PLCs Inherit Vulnerabilities

2.1 Codesys Software

The CoDeSys PLC Runtime can be found on a wide variety of industrial con-
trollers. Everything from low-end valve control PLCs to substation and syn-
crophasor management systems use the CoDeSys software. The CoDeSys PLC
Runtime also runs on a plethora of hardware – everything from embedded Intel
x86 CPUs to PowerPC and m68k CPUs runs the software. There is an entire line
of microcontrollers fabricated by a chipmaker that are designed specifically for
use as CoDeSys processors[14]. The runtime officially supports embedded Win-
dows CE, Linux, and vxWorks operating systems. 3S Software also produces a
’Soft PLC’ which is meant to run CoDeSys logic on desktop and server com-
puter systems. Using Soft PLC, these systems can be used for testing or as a
distributed control system.

Fig. 1. CoDeSys as part of a PLCs software architecture

The CoDeSys runtime is meant to lower the cost of development for PLC
manufacturers. A manufacturer will typically purchase a commercial operating
system such as vxWorks, a separate ICS protocol server such as a Modbus or

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

86 / 139 GreHack



PLC Vulnerability Inheritance 3

DNP3 stack, and perhaps even use another commercial embedded webserver.
Combining these software pieces together allows the manufacturer to focus on
developing PLC hardware.

As an added bonus, using the CoDeSys ladder logic runtime means that the
PLC manufacturer does not need desktop software for writing ladder logic for
their PLC. 3S-Software GmbH, the creators of CoDeSys, produce software for
writing ladder logic already. The PC software will compile and load ladder logic
into the PLC using a small plugin written by the PLC vendor.

2.2 Vulnerabilities in the design phase

The problem is one of insecurities introduced at the design phase of the authen-
tication protocol.

Fig. 2. CoDeSys services provided by the runtime

The CoDeSys runtime listens on a special TCP port (either 1200 or 2455).
This port provides three services for controlling industrial processes. These in-
clude a command line interface, a file transfer service, as well as the ability to
read and write to the PLCs physical IO.

Capabilities available using the CoDeSys runtime include the ability to stop
and start the PLCs ladder logic operation, transferring new ladder logic into the
controller, and direct manipulation of sensor and actuator data.

Theoretically, these operations can only be done by an authorized person. In
reality, no authentication is required to issue these special instructions[10].

3S Software has produced a patched version of their Soft PLC which enables
password protection, but for now embedded products are without mitigation
[11]. For these products, the vendor that manufactured the PLC will need to
create a new firmware image provide their customers with tools to update the
PLC. Firmware updates for PLCs are still an incredibly rare thing, and can be
very difficult for end users to roll out.

Another problem with the CoDeSys runtime is 3S Software’s method of en-
coding their ladder logic. Ladder logic is encoded as native CPU instructions for

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

87 / 139 GreHack



4 Éireann Leverett and Reid Wightman

the PLCs microprocessor. Generally the CoDeSys process runs with administra-
tive privileges. This is because the ladder logic must be able to read and write
to physical hardware outputs. The easiest way for manufacturers to grant this
permission is simply to run the CoDeSys Runtime with Administrator or root
privileges. As a result, in addition to uploading new ladder logic, a malicious
user could insert a rootkit into the PLC. This rootkit could easily block future
logic updates.

Yet another problem with the CoDeSys runtime is the file transfer mecha-
nism. File transfer is used by the PC software to enable the transfer of ladder
logic, as well as to read a ladder logic program from the PLC.

Ladder logic is typically installed on a PLC using a file called DEFAULT.PRG.
A second file, DEFAULT.CHK, acts as a checksum to ensure that DEFAULT.PRG
was transmitted successfully. The file transfer mechanism makes no attempt to
inspect for directory traversal. As a result, the CoDeSys runtime will allow read-
ing and writing to any file on a typical PLC.

The concinnity of all this is an affected controller that has no process control
integrity. Anyone with access to a network hosting an afflicted PLC can update
the logic in the PLC, and can thus control the process1. In addition, it can
allow an attacker to use an afflicted PLC as a persistent foothold on a process
control network. In fact, malicious attackers may have already figured this out
themselves.

In addition to the vulnerabilities found by the Reid Wightman, another re-
searcher discovered other vulnerabilities[12]. This demonstrates independantly
that the quality assurance teams at CoDeSys have failed to capture escaping se-
curity defects on multiple occasions. This is not uncommon because we know the
cost of failure lies with their customers. Perhaps we can take refuge in ’Caveat
emptor’ then, as a protection against vulnerable systems?

Unfortunately, the defects appear to be inherited in over 200 types of prod-
ucts and devices. In a world where industrial system downtime can cost millions
per hour[6], it would be expected that some supply chain quality assurance would
have detected these vulnerabilities. However, to the best of the authors’ knowl-
edge only one company avoided these defects by using a threat modelling process.
How can 200 product lines fail to establish that a password can be bypassed,
allowing rogue ladder logic upload? To those less familiar with these systems,
this is an equivalent of remote code execution from an unauthenticated attacker.

This then leaves us to assume that owners and operators of such vulnerable
and important equipment would at least never place it on the open internet.
Unfortunately, the authors were able to find roughly 600 vulnerable devices
running directly on the open internet, as discussed in the next section.

1 E.G. those that the authors found on the open internet

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

88 / 139 GreHack



PLC Vulnerability Inheritance 5

3 The Scan and The Incident Response

3.1 0.0.0.0/0 vulnerable CoDeSys device scan

Based on other works [9], the authors believed they would find some of these
devices deployed (and thus exposed) on the open internet. Having determined
that they would not crash a device with the scanning script, they set out to scann
IPv4 and find out how many vulnerable controllers there were. To accomplish
this task two linux machines were hosted in two different countries. The scan
methodology consisted of two stages:

1. Using UnicornScan[7] to determine machines with either TCP port 1200 or
2455 open. Please see Figure 3

2. Using an NMAP NSE script to determine which of this subset was a vulner-
able CoDeSys device. Please see Figure 4

The first task took about 6 months and the second about a week to complete.
In total the project spent approximately $500 USD in hosting costs. Reserved
blocks were ignored and people who contacted us with a cease and desist were
removed from the blocks to be scanned. They were able to find us via a webpage
hosted on the servers, if they detected the scans. The contact info page contained
this text:

This server is conducting an internet survey of devices which run the

CoDeSys protocol.

The CoDeSys protocol is used in many industrial control applications

and contains serious vulnerabilities which could impact the integrity

of control systems which use it. The scan sends a harmless query for

the version of CoDeSys running, to verify that the IP is speaking the

CoDeSys protocol.

This protocol should not be internet-facing. This scan will determine

internet-facing controllers and note what their underlying operating

system is.

Findings will be shared with the appropriate IP block administrator

(if available) as well as the responsible CERT team (if available)

so that the controller can be secured.

If you’d like to be added to the blacklist from this scan, please

send an email to admin@example.com

The following IP address is used in the scan: xxx.xxx.xxx.xxx

Amusingly, one organsiation asked us to stop scanning their network but
couldn’t tell us what their IP range was! Luckily, they understood the value of

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

89 / 139 GreHack



6 Éireann Leverett and Reid Wightman

our research and just asked to be informed if they had any vulnerable equipment.
In total the researchers received 11 cease and desist letters while using a packet
per second rate of 750. This means the majority of people do not detect scans
at that rate, or are not interested in these ports. Again this underscores the
vulnerability of industrial systems in a new way, with most organisations failing
to detect reconnaissance on those vulnerable systems.

It will no doubt be asked why the authors did not choose to use ZMAP [13].
The answer is simply that this scan was conducted over the winter of 2012 and
spring of 2013. At that point the ZMAP work cited had not been published. We
will return to the appearance of ZMAP and its impact in a later section.

Below we provide two Hilbert Curve heatmap visualisations of the output of
each stage. They were constructed using IPv4 Heatmap software available from
the Measurement Factory[8]. Both images visualise one pixel as a /14 netblock.
The authors expected a concentration to exist in certain netblocks. However,
either the numbers are too small, or concentrations don’t occur as we expected.

Fig. 3. Task One: Open TCP port 1200 or 2455

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

90 / 139 GreHack



PLC Vulnerability Inheritance 7

Fig. 4. Task Two: 600 vulnerable CoDeSys devices

After analysing the results, it became clear that the bulk of vulnerable
CoDeSys controllers existed primarily in RIPE3, with a smaller amount in ARIN
space. The authors cannot account for this other than to suggest that these
registries cover primarily industrialised nations. The Ten Autonomous System
Numbers with the largest number of exposed PLCs is listed in Table 1.

In Table 2 we can see that the first ten countries account for 66% of the
vulnerable CoDeSys systems found on the internet. This and the table above
motivate our work sharing these vulnerable systems with CERTs who are in-
terested in collaborating with us. It is clear that by working through them to
contact vulnerable asset owners, we can make a substantial impact with just a
few collaborations.

We know that not all of these systems will be classified as critical national
infrastructure (CNI), however we have found that finding exposed industrial
systems is a decent proxy towards protecting CNI. To put it concisely, CNI is
often a subset of ICS/SCADA systems. More importantly, criticality effects can
be produced by affecting a large number of non-critical devices. Consider for

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

91 / 139 GreHack



8 Éireann Leverett and Reid Wightman

Table 1. Ten Autonomous Systems containing the largest number of vulnerable PLCs

PLCs Found ASN CC Registrar AS Name

9 6327 CA arin Shaw Communications Inc.
9 6830 AT ripencc Liberty Global Operations B.V.
12 5610 CZ ripencc Telefonica Czech Republic, a.s.
21 28929 IT ripencc ASDASD-AS ASDASD srl
25 12605 AT ripencc LIWEST Kabelmedien GmbH
28 3269 IT ripencc Telecom Italia S.p.a.
28 3303 CH ripencc Swisscom (Switzerland) Ltd
43 1136 EU ripencc KPN Internet Solutions2

43 286 EU ripencc KPN Internet Backbone
44 3320 DE ripencc Deutsche Telekom AG

example if an attacker decided to target all of the vulnerable devices within a
single country.

Since Italy has the largest number in this particular study, let us use it as an
example. We are left to wonder what the effect would be of a simple attack such
as 81 industrial system devices ceasing to function at the same time. Obviously
there are more subtle uses that require more reconnaisance and intelligence to
create, an effect noted in this excellent paper[1].

Table 2. Ten Countries containing the largest number of vulnerable PLCs

PLCs Found Country Code

21 CA
21 ES
29 CZ
33 AT
33 US
38 CH
60 PL
64 NL
80 DE
81 IT

4 How do such vulnerabilities bypass detection?

While these authentication bypass issues escaped the QA team at CoDeSys, it
is not surprising or particularly uncommon. Software defects have been with us
for a very long time. What is more surprising is that the companies integrating
these libraries also did not detect such vulnerabilities. Do software and firmware
teams relying on third party software simply integrate it without testing? Clearly,

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

92 / 139 GreHack



PLC Vulnerability Inheritance 9

Table 3. Number of Vunerable Devices per RIR

PLCs Found Registry

0 afrnic
4 apnic
6 lacnic
54 arin
526 ripencc

the laudable approaches documented in scholarly articles are not reaching the
engineering teams[5].

The most shocking thing to these researchers is that one year after an ICS-
CERT alert went out to these companies, 600 vulnerable devices can be still
be found on the open internet. Other work tells us that the average patch time
in SCADA environments is 18 months[6]. However, we do find it surprising that
vulnerable systems have not been removed from their internet exposure during
that period. We can only assume either other mitigations are in place, or that the
awareness campaign has yet to penetrate these corners of ICS device deployment.

5 Conclusion

Disregarding the researchers’ time, the cost of this exercise is approximately .86
(USD) cents per vulnerable device found. Using a similar approach in the past
the authors’ were able to find devices at a cost of roughly $1.56 per device. We
aim to motivate other researchers to adopt the same approach and log their cost
per device as a future metric. Why would this metric be interesting or novel?

There are 9 reasons:

1. This metric is methodology and technology independant.
2. As costs for parallelisation fall this is incorporated into the metric.
3. As newer, faster scanners (such as ZMAP) are developed this is also included

in the metric.
4. The density of vulnerability across a network space is factored into the met-

ric.
5. Partial scans can still be used for metrics.
6. We understand the cost to attackers of finding opportunistic targets.
7. We understand the low cost to this methodology of defending.
8. We understand the change over time in the lifecycle of exposure and vulner-

ability.
9. It naturally translates a technical problem into an economic one ready for

debate and policy discussion.

Let us test the assumptions of these metrics by extrapolating the results onto
a theoretical use of ZMAP. In early 2012 it cost the authors of this paper .86
cents per vulnerable CoDeSys device. If they had used ZMAP instead, but the
same hardware and approach the cost would have been .11 cents per device. For

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

93 / 139 GreHack



10 Éireann Leverett and Reid Wightman

clarity, that’s 2 machines at 35 per month, with the scans completing in a single
week. The authors would not scan as quickly as possible, because they believe
this generates more trouble for sysadmins, and more cease and desist letters for
themselves (thus a week).

This clarifies the falling cost of reconnaisance for attackers, and makes it
clear that defenders could benefit from this approach if we remove legal and
administrative barriers to doing so. We believe this metric is the primary contri-
bution of this paper, and the NSE script for finding vulnerable CoDeSys systems
a secondary contribution. The rest of the paper is simply a published record of
the authors’ efforts to help secure the industrial systems of any country in the
world over a six month period.

Considering the riduculously low cost of finding these vulnerable devices,
why hasn’t CoDeSys done this work themselves? This suggests market failure for
ICS security to the authors, although they freely admit they are not economists.
Perhaps we can motivate an economist to examine this case study and publish
their findings. By publishing our costs, we hope this becomes possible in the
future.

The authors think this is an incredibly cheap approach to helping nations
secure their industrial control infrastructure, and as a side effect, verify and en-
hance the protection of their critical national infrastructure. If it sounds crazy
to spend a portion of the money allocated to cyber defense scanning for vulner-
abilities, we would like to point the reader toward excellent work in the security
economics of malware mitigation at scale[4][3]. Where the compromise of indus-
trial infrastructure has the potential to levy a heavy cost incident to society, isn’t
scanning and remediating through incident response teams one of the quietist
and most cost effective ways of reducing national attack surfaces?

References

1. Rid, Thomas. ”Cyber War Will Not Take Place” Journal of Strategic Studies,
(2012)

2. Ladder Logic, http://en.wikipedia.org/wiki/Ladder logic

3. Hofmeyr, Steven, et al. ”Modeling internet-scale policies for cleaning up malware.”
Economics of Information Security and Privacy III. Springer New York, ( 2013)

4. Clayton, Richard. ”Might Governments Clean-up Malware?.” Communication and
Strategies 81 (2011)

5. Reichenbach, Frank, et al. ”A Pragmatic Approach on Combined Safety and Secu-
rity Risk Analysis.” Software Reliability Engineering Workshops (ISSREW), 2012
IEEE 23rd International Symposium on. IEEE, (2012)

6. Eric Byres and Justin Lowe. The Myths and Facts behind Cyber Security Risks
for Industrial Control Systems. Proceedings of the VDE Kongress, (2004)

7. UnicornScan: Unicorns are fast! www.unicornscan.org/

8. IPv4 Heatmap Software http://maps.measurement-
factory.com/software/index.html

9. Leverett, Eireann P: Quantitatively Assessing and Visualising Industrial System
Attack Surfaces. MPhil Thesis, University of Cambridge Darwin College (2011)

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

94 / 139 GreHack



PLC Vulnerability Inheritance 11

10. N3S-Software CoDeSys Improper Access Control (Update), http://ics-cert.us-
cert.gov/alerts/ICS-ALERT-12-097-02A

11. 3S CoDeSys Multiple Vulnerabilities, http://ics-cert.us-cert.gov/advisories/ICSA-
13-011-01

12. 3S CODESYS Gateway-Server Multiple Vulnerabilities (Update A), http://ics-
cert.us-cert.gov/advisories/ICSA-13-050-01A

13. Zakir Durumeric and Eric Wustrow and J. Alex Halderman: ZMap: Fast Internet-
Wide Scanning and its Security Applications. Proceedings of the 22nd USENIX
Security Symposium, (2013)

14. Beck IPC GmbH sc1x3 CoDeSys Processors, http://www.beck-
ipc.com/en/products/sc1x3/index.asp

Code Appendix

NMAP NSE script for determing vulnerable CoDeSys devices

description = [[ development

author = "hdm"

-- minor tweaks and bugfix by krw

license = "Same as Nmap--See http://nmap.org/book/man-legal.html"

categories = {"discovery", "safe"}

local nmap = require "nmap"

local comm = require "comm"

local stdnse = require "stdnse"

local strbuf = require "strbuf"

local nsedebug = require "nsedebug"

-- Script is executed for any TCP port.

portrule = function( host, port )

return port.protocol == "tcp"

-- Grabs a banner and outputs it nicely formatted.

action = function( host, port )

local out = grab_banner(host, port, "\187\187\001\000\000\000\001")

if out == "EOF" then

-- try a big-endian query

out = grab_banner(host, port, "\187\187\000\000\000\001\001")

end

return output( out )

-- Returns a number of milliseconds for use as a socket timeout

-- value (defaults to 5 seconds).

-- @return Number of milliseconds.

function get_timeout()

return 5000

-- Connects to the target on the given port and returns any

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

95 / 139 GreHack



12 Éireann Leverett and Reid Wightman

-- data issued by a listening service.

-- @param host Host Table.

-- @param port Port Table.

-- @return Socket descriptor and initial banner

function grab_banner(host, port, query)

local st, buff, banner

local proto = "tcp"

local socket = nmap.new_socket()

socket:set_timeout(get_timeout())

banner = ""

proto = "tcp"

st = socket:connect(host, port, proto)

if not st then

socket:close()

return nil

end

socket:send(query)

-- Big endian version

-- socket:send("\187\187\000\001\000\000\001")

-- socket:send("\xbb\xbb\x01\x00\x00\x00\x01")

st,banner = socket:receive()

socket:close()

return banner

-- Formats the banner for printing to the port script result.

-- Non-printable characters are hex encoded and the banner is

-- then truncated to fit into the number of lines of output desired.

-- @param out String banner issued by a listening service.

-- @return String formatted for output.

-- Ripped from banner.nse with line wrap disabled (corrupts output)

function output( out )

if type(out) ~= "string" or out == "" then return nil end

local filename = SCRIPT_NAME

local line_len = 75

-- The character width of command/shell prompt window.

local fline_offset = 5

-- number of chars excluding script id not available to the script

-- on the first line

-- number of chars available on the first line of output

-- we’ll skip the first line of output if the filename is looong

local fline_len

if filename:len() < (line_len-fline_offset) then

fline_len = line_len -1 -filename:len() -fline_offset

else

fline_len = 0

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

96 / 139 GreHack



PLC Vulnerability Inheritance 13

end

-- number of chars allowed on subsequent lines

local sline_len = line_len -1 -(fline_offset-2)

-- replace non-printable ascii chars - no need to do the whole string

out = replace_nonprint(out, (out:len() * 3) + 1)

-- 1 extra char so we can truncate below.

-- break into lines - this will look awful if line_len is more than

-- the actual space available on a line...

local ptr = fline_len

local t = {}

t[#t+1] = out

return table.concat(t,"\n")

-- Replaces characters with ASCII values outside of the range of standard printable

-- characters (decimal 32 to 126 inclusive) with hex encoded equivalents.

-- The second parameter dictates the number of characters to return, however, if the

-- last character before the number is reached is one that needs replacing then up to

-- three characters more than this number may be returned.

-- If the second parameter is nil, no limit is applied to the number of characters

-- that may be returned.

-- @param s String on which to perform substitutions.

-- @param len Number of characters to return.

-- @return String.

-- Pulled from banner.nse and mangled to escape \r\t\n separately

function replace_nonprint( s, len )

local t = {}

local count = 0

for c in s:gmatch(".") do

if c:byte() == 9 then

t[#t+1] = ("\\%s"):format("t")

count = count+3

elseif c:byte() == 10 then

t[#t+1] = ("\\%s"):format("n")

count = count+3

elseif c:byte() == 13 then

t[#t+1] = ("\\%s"):format("r")

count = count+3

elseif c:byte() < 32 or c:byte() > 126 then

t[#t+1]=("\\x%s"):format(("0%s"):format(((stdnse.tohex(c:byte())):upper())):sub(-2,-1))

-- capiche

count = count+4

else

t[#t+1] = c

count = count+1

end

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

97 / 139 GreHack



14 Éireann Leverett and Reid Wightman

if type(len) == "number" and count >= len then break end

end

return table.concat(t)

(Script Written by hdmoore and altered and adapted by Reid Wightman)

Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers

GreHack 2013, Grenoble, France

98 / 139 GreHack


	Eireann Leverett, Reid Wightman/ Vulnerability Inheritance in Programmable Logic Controllers
	Eireann Leverett, Reid Wightman
	Reid Wightman
	Eireann Leverett
	Vulnerability Inheritance in Programmable Logic Controllers


