Guillaume Jeanne, Frangois Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access GreHack 2013, Grenoble, France

3.9 Guillaume Jeanne, Francois Desplanques/ Attacks using malicious devices : a way to
protect yourself against physical access

3.9.1 Guillaume Jeanne

https://www.linkedin.com/pub/guillaume-jeanne/54/871/b%a

3.9.2 Francois Desplanques

https://www.linkedin.com/pub/fran%$C3%A70is—-desplanques/67/7ba/475

3.9.3 Attacks using malicious devices : a way to protect yourself against physical access

In recent years, attacks by external devices have experienced a growing interest. These devices are every-
where, we live with them and take them everywhere, even at work. By creating corrupted devices, we can
break into private networks which are not connected to the Internet. Just plug the device. This study mainly
focuses on attacks by programmable USB devices. To begin with, we make an inventory of the potential
of these attacks. Then we analyse weaknesses of these attacks and we give several ways to improve them.
Finally, we discuss about various existing measures to limit the impact of such attacks and give countermea-
sures to our own improvements. Talk can be downloaded from http://grehack.org

130/ 139 GreHack

https://www.linkedin.com/pub/guillaume-jeanne/54/871/b9a
https://www.linkedin.com/pub/fran%C3%A7ois-desplanques/67/7ba/475
http://grehack.org

Guillaume Jeanne, Francgois Desplanques/ Attacks using malicious devices : a way to protect yourself

against physical access

GreHack 2013, Grenoble, France

Attacks using malicious devices : a way to protect yourself
against physical access

Francgois Desplanques
Ensimag Student
firstname.lasthame@ensimag.fr

ABSTRACT

In recent years, attacks by external devices have experienced
a growing interest. These devices are everywhere: we live
with them and take them everywhere even at work. By cre-
ating corrupted devices, we can break into private networks
which are not connected to the Internet. Just plug the de-
vice. This study mainly focuses on attacks by programmable
USB devices. To begin with, we make an inventory of the
potential of these attacks. Then we analyze weaknesses of
these attacks and we give several ways to improve them. Fi-
nally, we discuss about various existing measures to limit
the impact of such attacks and give countermeasures to our
own improvements.

Keywords
Hardware attacks, USB-based microcontroller, Teensy, se-
curity, fake peripheral, pentesting

1. INTRODUCTION

Nowadays, hackers show more and more ingenuity to com-
promise their victims. Remote attacks are no longer stand-
ing alone. Recently a new way was opened : hardware at-
tacks using external peripherals. These peripherals are ev-
erywhere, in our pockets, in our bags, at home and each
one of us owns dozens of them. They are USB keys, ex-
ternal hard disks, mobile phones, mp3 players, cameras and
even keyboards or mice. They are objects of daily life : we
live with them and take them everywhere : in the street, at
school, even at work. These objects contribute to the big
flow of data, but without using the Internet. They partici-
pate in their own data stream that can be compared to old
mails, which were taking a while to get from one point to an-
other and where the information was vacant during the ride
whereas the Internet would be emails of nowadays. These
devices contain a lot of information and even private docu-
ments, such as business or personal data but they also allow
to extract information quickly.

131/139

Guillaume Jeanne
Ensimag Student

firstname.lasthname@ensimag.fr

These attacks were quickly mediated because they hit crit-
ical industrial systems such as nuclear power plant with
Stuxnet and Duqu[l], thought these systems were not even
connected to the Internet.

These attacks need to interface with the computer, they tar-
get features of input-output controller (eg: network cards,
firewire controller, programmable PCI controllers, Ether-
net). Here we will focus on the USB port, which has the
advantage of being present on all computers and is reach-
able by everyone.

The context is the following : an attacker has a malicious
USB device and has a way to physically connect it to the
USB port of the victim’s computer. We program these at
software level, which means they can usurp functions of a
peripheral like a keyboard or a mouse. This facilitates the
implementation and makes the detection more complex since
it is difficult to differentiate the actions of a legitimate user
between those coming from the microcontroller. This can
happen in different ways such as an employee who compro-
mise the network of his company (intentionally or not). An-
other way is to hide the peripheral in a common object such
as a keyboard or mouse and offer it to the target[2]. Indeed
we can be attacked everywhere (at the office, at home and
so on) by anyone (a colleague, a friend, ...) It just needs a
few seconds while we are not aware of what is going on in
our computer. Once this is set up the attacker no longer has
physical access to the computer nor to the device. To carry
out such attacks, one of the most appropriate device is The
Teensy[3].

The Teensy USB Development Board was presented for the
first time as a malicious device at the DEFCON18 in 2010
by Adrian Crenshaw [4]. He demonstrated how the Teensy
can act as a keystroke dongle. It can type commands un-
beknownst to the user. Its small size allows it to be hidden
in a real keyboard, in a mouse, or else on a USB key. This

GPEHEﬁ:k

Guillaume Jeanne, Francgois Desplanques/ Attacks using malicious devices : a way to protect yourself

against physical access

GreHack 2013, Grenoble, France

facilitates the step of connecting the device to the victim’s
computer.

Attacks of this type are being democratized and the com-
munity has grown a lot. Teensy is used today as a pentest
device[5]. In this paper we will focus on possibilities offered
by the Teensy microcontroller, in order to compromise other
systems.

At first, we show a list of possibilities offered by the Teensy:
what are the attacks that have been developed for 3 years.
Then, we will focus on limitations with these attacks and
how we can improve them. Finally we define some counter-
measures appropriated against this type of attack. We are
going to alternatively turn us into the skin of the attacker
and defender.

2. AN OVERVIEW OF TEENSY ATTACKS

Kautilya[6] is an open-source toolkit which provides various
programs for a Human Interface Device (HID) which may
help in order to break in a computer, these programs are
called payloads. The whole Framework is written in Ruby.
Payloads are especially designed to be stored on the ini-
tial memory of the Teensy. It also gives the opportunity to
work with payloads on Windows/Linux/Mac OS X. There
is a great diversity of payload, especially on windows. Most
important ones are :

e Change the default DNS server
e Add a user en enable Telnet

e Download and Execute

Keylog

e Sniffer

Browse and Accept Java Signed Applet
e Code execution using DNS TXT queries

Wireless Rogue AP

All payloads are provided with a description when you se-
lect them. Then, there is a help menu, which step by step
help to design the payload as you wished. Some payloads re-
quire the administrator mode but a lot of them do not need
this. For example, the keylogger payload does not need such
privileges. This payload runs a keylogger written in power-
shell (the Windows advanced shell) and pastes keys to the
website Pastebin, where we can anonymously download and
upload text documents, as a private paste after a given in-
terval which can be configured.

Furthermore, Kautilya also gives some tools like scripts in
order to make the life of the attacker easier. For example, a
script can be used to translate the raw data from Pastebin
to the letters that the user typed.

It is very usual for Kautilya payloads to use Pastebin in or-
der to communicate with the outside. This is also the case
for the "Download and Execute”. It is one of the most in-
teresting payload because it allows to execute any program

132/139

by the targeted computer. In this case, the executable must
first be uploaded in text format on Pastebin using a provided
script. When executed, it downloads the file and converts it
into an executable file thanks to another script, then it exe-
cutes the file. This allows to avoid detection by an intrusion
detection system (IDS) but this not bypass the antivirus de-
tection because it is activated when the file is executed. It
must take care of using a malware whose signature is not
yet recorded by antivirus vendors.

Another framework we have experimented is the Social En-
gineering Toolkit (SET)[7]. This framework is about pen-
testing and is more general than Kautilya : it does not focus
on the Teensy even if a part is devoted to Arduino micro-
controlers. Those attacks are in the "Social-Engineering At-
tacks” then ”Arduino based vector attack”. Here are the
most important ones:

e Powershell HTTP GET MSF Payload

Internet Explorer/Firefox Beef Jack Payload

Go to malicious java site and accept payload

SDCard 2 Teensy Attack (Deploy Any EXE)
X10 Arduino Sniffer PDE and Librairies

Peensy Multi Attack Dip Switch + SDCard attack

An interesting point of the SET framework is the use of the
SD Card to deploy any files on the victim’s computer.

We decided to focus on the Windows Operating System be-
cause it is the most used in the world, both by individuals
and companies. It is also the most studied operating sys-
tem on the computer security field. Nevertheless, since the
Teensy acts as a keyboard, our solutions could be easily
adapted for Linux and MacOS.

3. PROBLEMS AND SOLUTIONS
3.1 Apparent shell window

All payloads are using shells to execute commands. It is
launched by the cmd or the powershell on windows. When
they are launched, a window is opened on the desktop and
therefore the user can see it. It would be better to do this
while the user is gone and we will see later how it is possi-
ble to detect the presence of the user. As there is no 100%
reliable method to detect the user, we have to take into con-
sideration the possibility of him being there. By seeing the
shell, the user will be suspicious. So we decided to make
this window less conspicuous. It is important to know that
the window shell must be in the foreground in order to inter-
cept keystrokes typed. To reduce the visibility of the window
shell, we decided to move it to the bottom right corner of
the screen. Furthermore on Windows, users cannot click on
the close button because it is not apparent.

To achieve that goal, we use a nice feature of the Teensy: it
can act as a USB mouse. We also noticed that this feature
was never used on others payloads that we studied. It is
probably because we can do few actions: click, unclick and

GPEHEﬁ:k

Guillaume Jeanne, Francgois Desplanques/ Attacks using malicious devices : a way to protect yourself

against physical access

GreHack 2013, Grenoble, France

move the mouse pointer. But we can only move the pointer
to a relative position from the current position of the pointer
and we do not have this initial position. Besides, we do not
know where the windows are displayed on the screen. To
hide the window, we used the trick corresponding to the
following algorithm:

Procedure Hide window:
Press Alt+Space+N
Move pointer to top left
Shift pointer
Click
Move pointer to bottom right
Shift pointer
Unclick
end;

The command Alt+Space+N is standard on Windows and
works for every windows. Its aim is to put the window on
the maximize size and stuck it to the top-left corner.

3.2 Auto Correction

As Teensy acts as a keyboard, it can send data to the system,
but the reception is more complicated. We have no clue
of what is going on the victim’s system. When payload
are launched, there are several factors that can prevent the
payload from being executed: the user closes the window,
types on the keyboard or if commands are sent to fast for
the computer which executes them.

The goal is to know if the script failed in order to restart
later if need be. It is known as auto-correction and it was
studied in [8]. The only data sent by the system to the
Keyboard are the state of 3 leds: NumLock, CapsLock and
ScrollLock.

To detect this, the Teensy began writing a little powershell
script which allows to turn the CapsLock led on.

The Teensy checks if the CapsLock led is on and if it is,
it turns it off. Otherwise it restarts everything from the
beginning or return to the state "detection of user”, depend-
ing of the payload implementation. Then this script could
be launched after each major step of the payload to see if
everything is going well.

Instead of using the CapsLock led, we decided to use the
ScrollLock led in order to make that check. Indeed this led
is usually less present on Keyboards. It is especially true on
laptops. Thus the user will not see the led blinking. It has
also no impact of the action of the user whereas CapsLock
can bother the user and make him to realize that something
is happening on his computer.

Another technic to verify data that have been transmitted
successfully is to store each command in a batch. Then we
can compute a CRC on this file in order to be sure that
no perturbation happened during the typing of the script.
If it is a sucess, the powershell can turn a specified led of
the keyboard on. Thus the Teensy would know that the
execution went well. Otherwise, the Teensy would demand

133 /139

again the execution of the script after a delay if the led is not
lighting on. By this way, we ensure that the script executed
on the computer is correct.

3.3 Limited internal memory force the use of

the Internet
As Teensy is a low cost peripheral, it has limited features,
only 16kB of RAM and 130kB of storage.

Specification Teensy 3.0
Processor MK20DX128
32 bit ARM
Cortex-M4
48 MHz
Flash Memory (B) | 131072
RAM Memory (B) | 16384
EEPROM(B) 2048

This implies that all payloads cannot be stored on the mem-
ory. For example an attacker may want to adapt his program
to several type of computers which increases the size of the
program a lot. It is also especially true in the case when you
want to deploy a file on the computer victim: the size is yet
limited by the capacity of the device.

We have already talked about the trick that Kautilya uses
for that problem: it downloads the payload from Pastebin.
However it fosters another problem: the use of the Inter-
net. It is a problem for two reasons. First, the attacker
must assume that his victim owns an Internet connection,
which will be able to access on the website. Then we loose
the advantage of having a physical access to the computer
by reaching the web. The activity of the Teensy is more
visible when using the Internet because packets are being
transferred through the network. Thus, the network admin-
istrator will be more easily informed of a suspicious activity
and may be able to detect the device. The Internet in a
company is very often monitored by the responsible of the
Security. By scanning the connection, he may detect a sus-
picious activity because there is a permanent flow of data
trying to reach Pastebin at a regular interval. In a security
audit, one of the first thing that will be scanned is packets
transferring through the network. Therefore it is really im-
portant to find a solution which do not use the Internet and
stay local to the computer. It is a sine qua none condition
for the discretion of an attack.

Therefore there are two problems which are related one to
another: the limited capacity of the Teensy and the detec-
tion when using the Internet.

In order to avoid the problem of limited capacity, we have
soldered a memory card reader to the Teensy. It can be done
on the Teensy 3.0 as described in the official website[9]. By
this way, we are able to connect SD card in order to take
benefits of several GigaByte of storage. It is now therefore
possible to embedded files.

It still remains the problem to deploy this file on the victim

computer. The Social Engineering Toolkit provides a solu-
tion for transferring a file from the SD card to the computer.

GPEHEﬁ:k

Guillaume Jeanne, Frangois Desplanques/ Attacks using malicious devices : a way to protect yourself

against physical access

GreHack 2013, Grenoble, France

The executable is translated into a text file just like it was
done with Kautilya. Then the Teensy opens a NotePad in
the aim to recopy every data from the SD Card. This is done
by using only the Keyboard: every characters are directly
pressed. Afterwards, it also uses a powershell script which
converts this format into a real executable.

This method has a serious drawback. It can be very long
to type all the code from your executable to the Notepad.
Indeed the theoretical maximum rate of a keyboard is 500
characters per seconds. Some Operating System are even
limiting up to 62 characters per seconds[10]. Moreover the
text version of an executable doubles the size in bytes to be
transmitted. For example, the magic flag 'MZ’ of a PE is
considered as two bytes in a program: 0x4d and 0x5a. When
the text version is made, it is written "4d5a” in the text file
which is actually 4 bytes. Given a 50KB executable, the
text version will be 100KB. It will take between 3 minutes
and 20 seconds, if you have the maximum bandwidth, and
28 minutes, with the limitation, to be transferred to the
computer. Remember that during all this time, a window
for the notepad is still active in the desktop of the user.

Therefore we wanted to improve this time by using directly
a protocol by USB. The Teensy offers this kind of mode with
RAW HID or the Serial mode.

The RAW HID mode has been created in the aim to send
raw data on the USB port. With that protocol, we can
transfer the file, segmented into packets of size 64 bytes,
directly to the computer without using the network. It can
only be detected locally, by the user of the computer.

The speed rate is also much better than the previous method,
we have experimented a rate of 10,5 KB/s bytes per second
on a normal laptop. Moreover the translation into the text
mode is no longer required, it can directly send the data of
the file using the SdFat library [11]. For the same 50KB
executable, it needs about 10 seconds. Moreover there is no
window opened during that time.

The Serial mode is also used to send data. In the case of
the Teensy, it uses indifferently either the port COMX with
X varying between 1 and 9. The first step is to identify
the port really used by the Teensy to send data. With this
mode, the Teensy can send or receive packets of one byte.

The speed rate is even better than the RAW HID method
because we have experimented a rate of 100 KB/s, which is
10 times faster. That is the reason why we’ll use this mode
when we want to transfer data.

In order to use one of this mode, we need to have a program
which runs on the computer’s victim in the aim to receive
data from Teensy. That’s the reason why we need to set up
a protocol of communication between the Teensy and the
computer.

3.4 Communication

One of the biggest problem with the Teensy is the lack of
communication. It is difficult to adapt the behavior of the
Teensy in function of the behavior of the computer. As
we have seen in the Auto-Correction part, it is possible to

134 /139

make a protocol using the Keyboard leds. There is three
leds which can be turned on and off so it makes 3 bits of
information. It is not very quick and it is not very discrete.
Indeed it seems like Morse Code when you want to dialog
with such a protocol because leds are always blinking.

In order to communicate between the computer’s victim and
the Teensy, we worked on creating a more efficient interface,
which will be a listener. The goal of this program is to listen
directly to the commands of the Teensy and execute orders
that are demanded. It would be an infinite loop which wait
for the order of the Teensy. For example, here is the case of
a deployment of a file in the victim’s system:

While (1):
Wait for an Order
Switch (Order):
Case : Deploy a file
Scan until the COM port has been found
Receive size of deployed file
For i in 1..size:
Copy received packets to the file
Close the file
Launch it in background
Case :

We worked on a protocol of communication for the deploy-
ment of a file. At first, the listener scan which COM port
is being used by the Teensy. Then the first data sent by
the Teensy would be the size of the deployed file. It will be
terminated by an "X” meaning that next packets sent are
the data of the deployed file. For each data received, the
listener copies it to the file previously opened. Then, the
file is closed and it can be launched in background, meaning
that there is no apparent window on the Desktop.

The Teensy would just have to send data directly from the
SD Card:

Initialize the Serial configuration
Initialize the SD Card

Send on Serial the command to deploy a file
Send size of deployed file

Send a "X"

Send packets from SD Card of the file

Here is the architecture of the communication for a malicious
USB mouse:

Computer’s Victim Malicious mouse

Architectural Diagram

GPEHEﬁ:k

Guillaume Jeanne, Frangois Desplanques/ Attacks using malicious devices : a way to protect yourself

against physical access

GreHack 2013, Grenoble, France

There is a USB HUB in order to connect both mouse and
Teensy. By this way, the Teensy is invisible to the victim
and it can communicate with the SD Card in order to drop
some executables, directly by sending data to the listener.

As you may have noticed, there still is one problem with this
listener. How can we send this executable? We used the
drop payload style of SET in order to do so. But the goal is
to be as discrete as possible and we wanted to minimize the
time of the transfer. The only parameter to play with is the
size of the file. In order to achieve that, we made a program
as light as possible. To that purpose we wrote it directly
in assembly with MIASM][?] and make the executable with
Elfesteem[?]. We used only one section that will contain
both the code and the import directory. We reached a size
of 996 bytes for our listener.

At this step, we are still complying to the SET payload type,
which write bytes directly to the NotePad and then open a
powershell to transform the text version into an executable.
However we decided to go further : we don’t want to open a
Notepad and then a Powershell since it is two steps that can
be done in one, directly in the Powershell. Besides the major
part of the whole process is to transfer the text file. For
that purpose, we decided to encode the text file into Base64.
Indeed there are only 95 printable keys on the keyboard and
the closest inferior multiple of 2 is 64. We lower the size of
the file to 6828 Bytes.

We have experimented a time of 14 seconds to launch the
listener, by only pressing keys with the Keyboard as the
Teensy demanded.

Afterwards, the communication protocol is in place : ev-
erything can be done with a maximum of discretion. The
Teensy can adapt his reaction to the behavior of the com-
puter. For example it can be used to detect the version of
Windows and then select an appropriate exploit from the
SD Card adapted to the version of the system. Once the
protocol is set up, the attacker have myriads of possibility.

The dropper is only an example of what can be done with
such a listener but we could guess others commands which
can be executed. For example the listener could provide
pieces of information about the victim’s computer in order to
adapt payloads to the configuration of the computer. Indeed
you can retrieve those by the command "ver” or "systeminfo”
in cmd.exe. More interesting point, you can try to determine
the antivirus of your victim and disable it. You also can
modify the registry base of the computer in order to make
the listener or another program persistent.

We could also improve the listener in order to act as a server
between the computer and the Teensy. Once it is uploaded
on the computer, it can send information to the Teensy, for
instance sending user keystroke or private documents to the
SD card if the attacker’s plan is to get back his Teensy later
or identifying version of softwares to try a privilege escala-
tion. The advantage of using directly the Teensy and not
doing it by a program himself is to usurp the user identity.
Indeed some commands would be rejected by the system if
it is a program that demanded them. But we can think of
using the keyboard and the mouse to do it, making the sys-

135/139

tem believe that the user is querying it. By this way, we can
for example disable the firewall.

The listener is therefore very powerful when installed. In
order to check that we can reinforce the success of the In-
stallation by setting up a CRC at the very beginning of the
file. It would compute it himself and then send it to the
Teensy. If it is correct, the installation has been completed.
Otherwise, if there is no answer or the checksum is incorrect,
the Teensy would demand a reinstallation of the listener.

3.5 Detecting user presence

As we have seen previously, the execution of an attack by
keystroke is very showy. The attacker can only type com-
mands in a window at the forefront of the operating system.
So it is essential to detect if the user is physically present at
his post before starting execution because if he is, he may
close the shell window that opens or type with his keyboard,
which will modify the script we are writing.

To do that, we can turn on the capslock led, which has the
effect that the user will write in capital letters. Then we
wait ten minutes. If, after this time the led is still on, we
can assume that the user does not use his computer. Of
course this method is not optimal, it means only that the
user is probably not using his keyboard. But he can be in
front of the computer, watching a movie, or using only the
mouse. Today, considering the small amount of information
that Teensy can receive from the system (only status of 3
leds) there is no 100% reliable method. Therefore it justifies
the fact that we try to minimize the visual impact and the
execution time of Teensy attacks.

4. COUNTERMEASURES

First we have to contradict a popular belief: using an ac-
count without administrator privileges of the system is not
sufficient to protect against Teensy payloads. In fact, several
payloads do not need administrator privileges and they can
be very harmful: keylogging, download and execute. Fur-
thermore all Teensy payloads can bypass the Windows User
Account Control (UAC), which is present since Windows
Vista, and have for goal to prevent the system from unde-
sired modifications. To do this, the Teensy acts as if the
user clicked "yes” by pressing the left arrow and then enter.

Another weak protection against Teensy is to block storage
device, ie block devices that contain memory, such as flash
drives or hard drives. Indeed this policy is often applied in
companies to avoid the leak of information. But here the
Teensy is not seen as a storage device but as a keyboard,
even if it has a SD card.

At the recent conference SSTIC 2013, a talk[12] advises com-
panies to establish a white list of allowed USB devices by
matching the USB descriptor of the device. This descriptor
contains following information: the USB class, the unique
couple vendor ID/product 1D, the string description of the
device and many additional information such as the serial
number. With this protection, you can allow only one type
of keyboard of a certain brand. This protection can be by-
passed by the Teensy by changing constants VENDOR._ID
and PRODUCT_ID in the file usb_desc.h. This file contains

GPEHEﬁ:k

Guillaume Jeanne, Frangois Desplanques/ Attacks using malicious devices : a way to protect yourself

against physical access

GreHack 2013, Grenoble, France

all the variables related to the USB descriptor, it is dynam-
ically compiled when we compile a payload for the Teensy.
These constants represents the USB descriptor that the sys-
tem will see. The attacker still have to determine exactly
which keyboard the victim uses.

Another way in which we might think to protect us is to al-
low only a single pair keyboard / mouse for each computer.
But once again, it is weak: it is possible to program the
Teensy to become a real mouse, connecting it the laser sen-
sor, clicks and wheel. In addition to being a real mouse, it
may also behave maliciously[13]. This remark is also valid
for a keyboard. So the system sees in this case only one
mouse or keyboard connected. It also makes the detection
of the activity of the user much easier because you can know
if he is using his mouse or not.

Finally the best protection is, as far as possible, physically
or software convict USB ports on the computer. This is pos-
sible via the bios or by setting this key to 4 in the Windows
register: HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\ UsbStor

If you know that you are a victim of these attacks, for in-
stance you saw a window shell automatically type script or
you discovered a Teensy in your mouse, there are various
ways to trace the attacker. First is to check your log brows-
ing history. Kautilya works mainly with Pastebin but it can
be adapted to use other website such as dropbox or anything
else which allows to store text. But interesting fact is when
the payload send content to the internet (keylogging, hash-
dump, wlan password dump) it contains the login and the
password of the user. So you can retrieve the information
that have been leaked.

In the case where the payload download an executable, for
instance like a meterpreter or a simple shell, you can find
by using reverse engineering, the IP server of the attacker.
The main problem is to know the code that was executed
by the Teensy. Several tools exist to dump the memory of
an arduino based controller.

It is difficult to protect against these attacks because the
device tries to act as a normal user and the system cannot
make any difference. The only difference that we noticed
compared to a human is the typing speed of keystroke. As
we see previously, the write speed of the Teensy is between
62 and 500 keystrokes per second, whereas a human person
cannot exceed 10. We used this difference to create a tool
that would block the system if the number of keys typed is
too high. Thereby detecting the presence of an attack by
keyboard.

To do this, we put a keyboard hook. A hook consists in
intercepting function calls to perform pre-processing, such
as changing the arguments. Here it is a hook on the func-
tion that handles keystrokes in order to compute the writing
speed and to cancel the keyboard event if the writing speed
is over 30 keystrokes per second. Thereby, Teensy actions
will be blocked. This tool has blocked all payloads that we
tested, and does not cause any false positive.

But if the attacker has knowledge of such a tool, it can by-

136 /139

pass it by adding delays between keys. With our tool, an at-
tacker must add a second delay whenever 30 keys are typed.
For instance, the kautilya payload ”download and exec” (that
was described in part 2) is one of the fastest payload to ex-
ecute (14 sec) and sends 1134 key to the system. To bypass
our tool with the method we have just explained, this pay-
load will last 51 seconds, which is 3.6 times longer than the
original one. This time factor is substantially the same for
all payloads, which can lead to very long executions, and
thus increase the probability of detecting an attack.

S. FUTURE WORK

Teensy attacks are only in their beginning, there is much
point to improve. First, the detection part could be more
developed : for instance, we should use sensors such as a
micro to detect if the user is in front of the screen, watch-
ing a movie, or typing on his keyboard. An advantage of
the Teensy is his arduino based architecture which allows to
connect a lot of extensions. This method would be much
more efficient than to look at the keyboard leds. It also
remains to implement the possibilities mentioned in section
3.4 about the listener in order to have better interactions
between the victim’s computer and the Teensy. Finally, to
validate our solutions, we could also test the effectiveness of
these attacks in a real environment such as a company.

6. CONCLUSION

Today’s attacks using external devices are growing. USB
stick, mobile phone, mp3 player or even a mouse can be a
source of infection. The range of possibilities opens up from
day to day, for instance at the upcoming BlackHat Confer-
ence, a research team will present a way to inject malware
into i0OS Devices via malicious chargers[14]. In this article
we look at the possibilities offered by this type of attack
by focusing on the Teensy microcontroller on the Windows
operating system, although the results are adaptable for all
operating systems. The great advantage of this type of at-
tack is that they are almost undetectable because they be-
have like a normal user. This article shows the weaknesses of
various attacks and ways to improve them. In particular we
implemented a technique for removing network queries dur-
ing attacks by storing the payload on a SD card and estab-
lishing a communication protocol between the Teensy and
the target. Finally the article shows that most methods set
up against this are inefficient and we propose several ideas
to detect or delay them. To illustrate this, we show a proof
of concept that can detect an Teensy attack by measuring
the tape speed on keyboard. The proliferation of articles on
this subject shows that these attacks are underestimated by
companies.

We also conclude from this analysis an interesting point: the
more information the attacker has about the target (if it uses
tools of detection, keyboard model in a company), the more
chance he has to succeed in his attack.

This article feeds the debate of the "Bring Your Own De-
vice” (BYOD) [15], and the boundaries between personal
and work spheres. This article shows that the solution to
this issue will go through the development of detection tools,
which are not sufficiently efficient today.

GPEHEﬁ:k

Guillaume Jeanne, Frangois Desplanques/ Attacks using malicious devices : a way to protect yourself
against physical access

GreHack 2013, Grenoble, France

7.
1]

REFERENCES

Stuxnet/Duqu,

‘http://www.cs.arizona.edu/ collberg fteaching /466-
566 /2012 /resources /presentations /2012 fopic9-

final report.pdf.”

H. pierce network with jerry-rigged mouse,
‘http://www theregister.co.uk/2011 /06 27 /mission
impossible mouse attack.”

Tensy, ‘http://www.pjrc.com store fteensy3.html.”

A. Crenshaw,

‘https://www.defcon.org images defcon-18 /dc-18-
presentations /crenshaw /defcon-18-crenshaw-phid-usb-
device.pdf.”

labofapenetrationtester,
‘http://Nlabofapenetrationtester.blogspot.fr/2012 04 feensy-
usb-hid-for-penetration-testers.html.”

‘Fautilya, http://code.google.com/p /kautilya,/”
TrustedSec,

‘https://www trustedsec.com/downloads social-
engineer-toolkit/.”

O ensiveSecurity,

‘http://www.o ensive-security.com/o sec/advanced-
teensy-penetration-testing-payloads/ - advanced
teensy penetration testing payloads.”

ZTKnl, ‘http://forum.pjrc.com threads/16758-
teensy-3-microsd-guide - teensy 3 microsd

guide.”

PIRC,

‘http://www.pjrc.com fteensy/td ~ _keyboard.html.”
SDFEatLib, ‘https://code.google.com/p /sdfatlib/.”

B. Badrignans, “Attaques applicatives via
peripheriques usb modifies infection virale et fuites
d’informations,” 2013.

nes, ‘http://www.nes.fr/securitylab /?p=532.”

B i0S malicious chargers,

‘http://www blackhat.comfus-13 brie ifiApgs.html.”
P, Railloux,

‘http://www lemagit.fr/technologie /securite-
technologie /menaces-

informatiques/2012/10 /05 /patrick-pailloux-anssi-
declenche-une-polemique-autour-du-byod /””

137/139

GPEH%]{

	Guillaume Jeanne, François Desplanques/ Attacks using malicious devices : a way to protect yourself against physical access
	Guillaume Jeanne
	François Desplanques
	Attacks using malicious devices : a way to protect yourself against physical access

