

Attacks using malicious devices

François Desplanques & Guillaume Jeanne

GreHack'13

15-11-2013

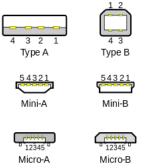
About the Speaker

- François Desplanques aka Frisk0
- Student at the ENSIMAG

Fan of Reverse Engineering!

Outline

- What are the different USB attacks?
- How to set up a USB device attack for real
- Hardware and functioning
- Demonstrations of attacks

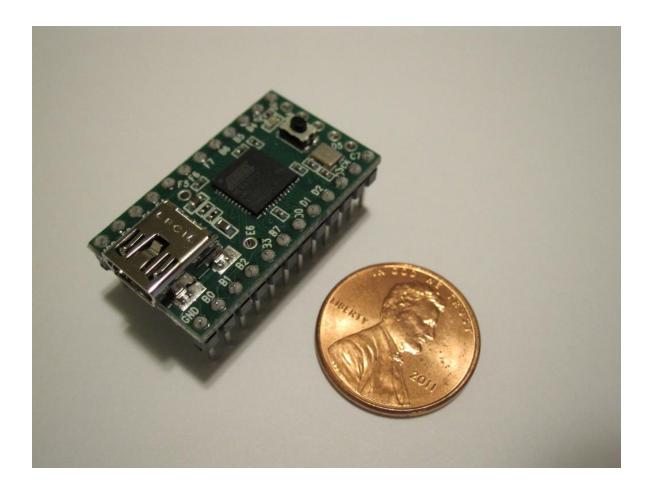

Peripheral attacks by USB

- Different kinds of USB attacks:
 - USB Firmware (USB Driver)

Transmission with files

Fake device

Attacks with fake device


- First during DEFCON 18
 - In 2010, by Adrian Crenshaw (Irongeek.com)
 - Arduino can act as a keystroke dongle

Microcontroller

http://www.pjrc.com/teensy/

Hardware specifications

Specification	Teensy 2.0	Teensy++ 2.0	Teensy 3.0
Processor	ATMEGA32U4 8 bit AVR 16 MHz	AT90USB1286 8 bit AVR 16 MHz	MK20DX128 32 bit ARM Cortex-M4 48 MHz
Flash Memory	32256	130048	131072
RAM Memory	2560	8192	16384
EEPROM	1024	4096	2048
I/O	25, 5 Volt	46, 5 Volt	34, 3.3 Volt
Analog In	12	8	12
PWM	7	9	10
UART,I2C,SPI	1,1,1	1,1,1	3,1,1
Price	<u>\$16</u>	<u>\$24</u>	<u>\$19</u>

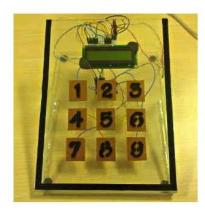
Current usage of Teensy

Interactive Infinity Mirror

Website (Spanish)

An infinity mirror with interactive response using an ultrasonic distance sensor.

Andrés Corvetto



Flight Controller

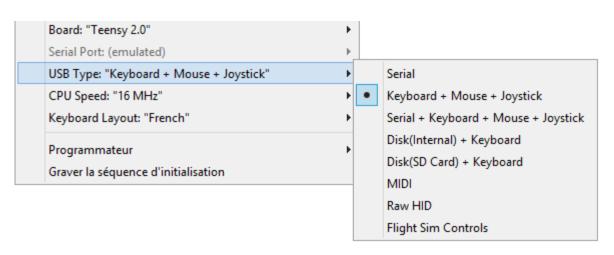
Forum Post YouTube Video (test flight), YouTube Video (software) Source Code

Flight Controller multiple kinematitcs algorithms.

"cTn"

Reverse Engineering Challenge

Website
Hack A Day Article


A reverse engineering challenge for Insomni'hack 2013, with live display of results.

Nicolas Oberli

USB Type

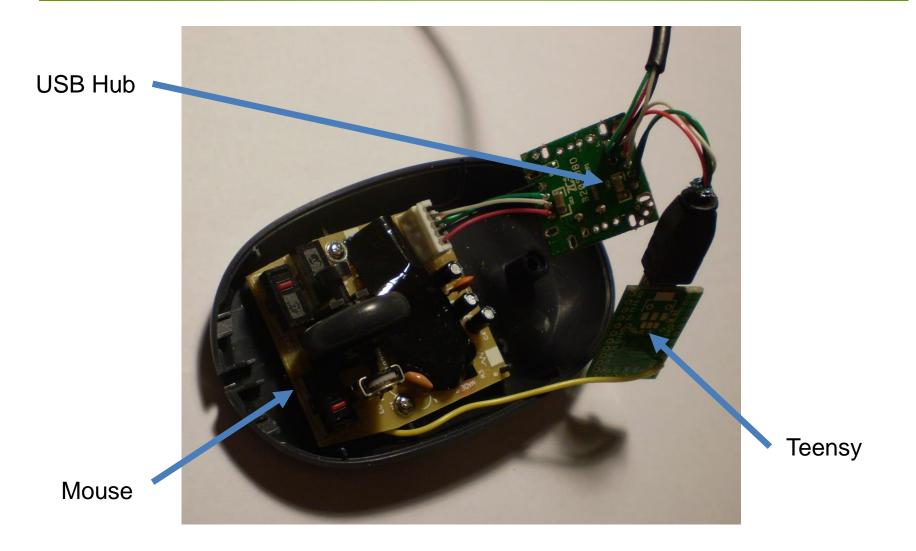
- You can transform your Teensy into a:
 - Serial device
 - Keyboard
 - Mouse
 - Joystick
 - MIDI
 - Raw HID
 - Flight Sim Controls
 - Internal Disk
 - SD Card

How does it work?

- Ask the system to load the corresponding driver
 - By acting like any other USB device
 - No need of a specific driver!
- Like other HID product it has:
 - Vendor ID
 - Product ID
 - •
- You can specify it (usb_desc.h) to be another product from another brand.

Social Engineering

- Find a way to plug the device to the target
 - ⇒ Make them plug!
 - ⇒ Hide it in a device from everyday life
 - ⇒ Plug it yourself!
 - ⇒ Do some very quick commands



- Offer the device as a gift
- Loose it by negligence on the parking of a firm...
- •

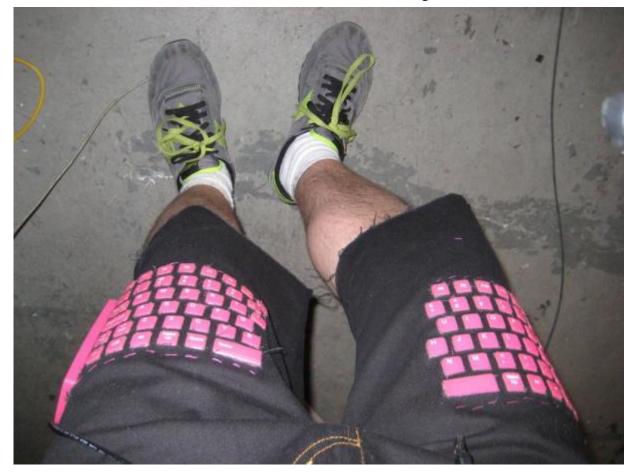
What we are expecting

Frameworks

- Kautilya "Pwnage with Human Interface Devices"
 - Written in Ruby
- SET « Social-Engineer Toolkit »
 - A set of social engineering attacks
 - Written in Python

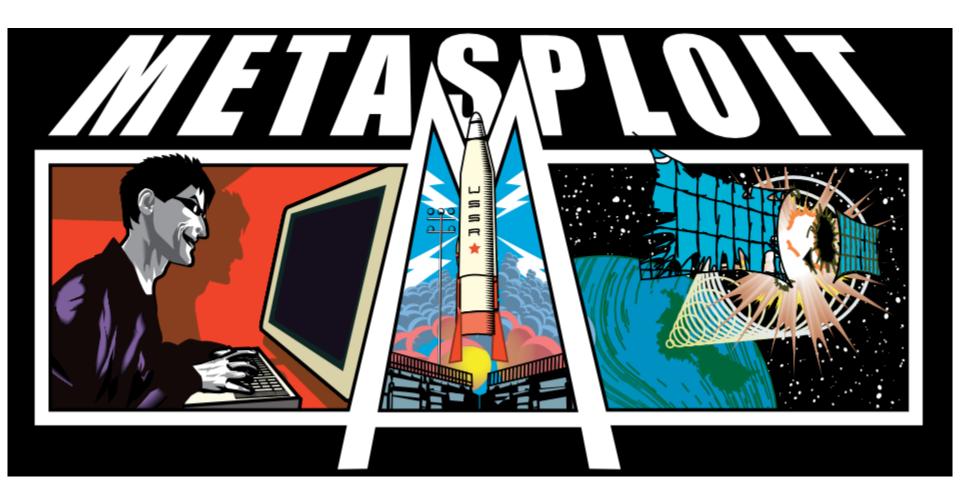
Kautilya

- Payloads for Windows
- Payloads for Linux
- Payloads for Mac OS X
- Add an admin user
- Change the default DNS server
- Edit the hosts file
- Add a user and Enable RDP
- Add a user and Enable Telnet
- Forceful Browsing
- Download and Execute
- Sethc and Utilman backdoor
- Gather Information
- 10 Hashdumn and Evfiltrato


- 1. Download and Execute
- Reverse Shells using built in tools
- Code Execution
- 4. DNS TXT Code Execution
- Perl reverse shell (MSF)

Windows

Linux


HACK like a keyboard

DEMO 2

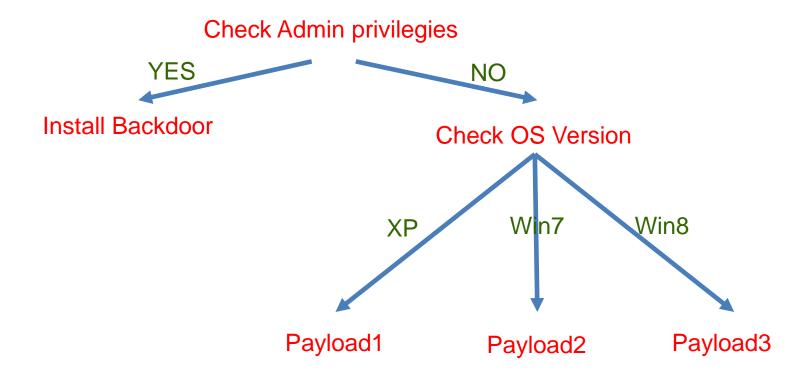
Download and exec a malware

Problem with some Anti-Virus softwares

Limited memory


- Embedding several malwares is impossible on a Teensy
 - 130 Ko of memory
 - Malware size between 5 Ko and 5 Mo
- Need to use another trick -> solder a SD Card Reader:

Architecture


- No « direct » communication possible
- New protocole of communication:

Listener will receive orders from the Teensy

Architecture - Example

Teensy

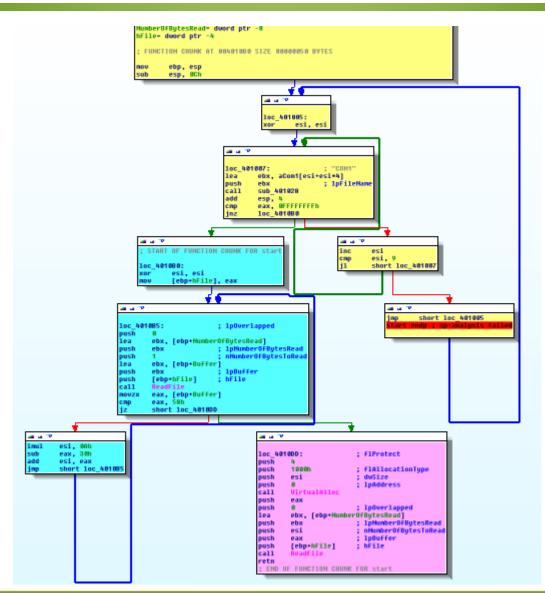
Listener

Listener

It has to be written by the keyboard

- Be as efficient as possible:
 - Smallest size for the listener
 - Maximum of discretion

How to make it?



- First solution:
 - Written in C
 - Stripped
 - Packed with UPX

- Second solution:
 - Write it directly in ASM (with MIASM)
 - Used Elfesteem for the executable
 - -> 986 octets (5x better!)
- Encoded in base 64

In assembly...

In assembly...


```
<u>....</u>
loc 4010DD:
                         : flProtect
push
        1000h
                         ; flAllocationType
push
                         : dwSize
push
      esi
                         ; lpAddress
push
call .
        VirtualAlloc
push
        eax
push
                         ; lpOverlapped
        ebx, [ebp+NumberOfBytesRead]
lea-
                         ; 1pNumberOfBytesRead
push
        ebx
push
        esi
                         ; nNumberOfBytesToRead
                         ; 1pBuffer
push
        eax
        [ebp+hFile]
                         : hFile
push
call
        ReadFile
retn
; END OF FUNCTION CHUNK FOR start
```


TIME FOR THE SHOW!

Conclusion

Don't trust devices!

... You can get your USB keys after the rump session ©